Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mueller, Hans J.

  • Google
  • 1
  • 15
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016The phase diagram of NiSi under the conditions of small planetary interiors8citations

Places of action

Chart of shared publication
Baron, Marzena A.
1 / 2 shared
Morard, Guillaume
1 / 36 shared
Santangeli, James
1 / 1 shared
Lord, Ot
1 / 10 shared
Dobson, David P.
1 / 6 shared
Mezouar, Mohamed
1 / 18 shared
Wood, Ian G.
1 / 6 shared
Lathe, Christian
1 / 6 shared
Vočadlo, Lidunka
1 / 2 shared
Ahmed, Jabraan
1 / 1 shared
Thomson, Andrew R.
1 / 3 shared
Wann, Elizabeth Th
1 / 1 shared
Hunt, Simon A.
1 / 6 shared
Whitaker, Matthew
1 / 2 shared
Walker, Andrew M.
1 / 7 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Baron, Marzena A.
  • Morard, Guillaume
  • Santangeli, James
  • Lord, Ot
  • Dobson, David P.
  • Mezouar, Mohamed
  • Wood, Ian G.
  • Lathe, Christian
  • Vočadlo, Lidunka
  • Ahmed, Jabraan
  • Thomson, Andrew R.
  • Wann, Elizabeth Th
  • Hunt, Simon A.
  • Whitaker, Matthew
  • Walker, Andrew M.
OrganizationsLocationPeople

article

The phase diagram of NiSi under the conditions of small planetary interiors

  • Baron, Marzena A.
  • Morard, Guillaume
  • Santangeli, James
  • Lord, Ot
  • Dobson, David P.
  • Mezouar, Mohamed
  • Mueller, Hans J.
  • Wood, Ian G.
  • Lathe, Christian
  • Vočadlo, Lidunka
  • Ahmed, Jabraan
  • Thomson, Andrew R.
  • Wann, Elizabeth Th
  • Hunt, Simon A.
  • Whitaker, Matthew
  • Walker, Andrew M.
Abstract

The phase diagram of NiSi has been determined using <em>in situ</em>synchrotron X-ray powder diffraction multi-anvil experiments to 19 GPa,with further preliminary results in the laser-heated diamond cellreported to 60 GPa. The low-pressure MnP-structured phase transforms totwo different high-pressure phases depending on the temperature: theε-FeSi structure is stable at temperatures above ∼1100 K and apreviously reported distorted-CuTi structure (with <em>Pmmn</em>symmetry) is stable at lower temperature. The invariant point is locatedat 12.8 ± 0.2 GPa and 1100 ± 20 K. At higher pressures, ε-FeSi-structured NiSi transforms to the CsCl structure with CsCl-NiSi asthe liquidus phase above 30 GPa. The Clapeyron slope of this transitionis -67 MPa/K. The phase boundary between the ε -FeSi and <em>Pmmn</em>structured phases is nearly pressure independent implying there will be asecond sub-solidus invariant point between CsCl, ε -FeSi and <em>Pmmn</em>structures at higher pressure than attained in this study. In additionto these stable phases, the MnP structure was observed to spontaneouslytransform at room temperature to a new orthorhombic structure (also with<em>Pnma</em> symmetry) which had been detailed in previous <em>ab initio</em> simulations. This new phase of NiSi is shown here to be metastable.

Topics
  • impedance spectroscopy
  • phase
  • experiment
  • simulation
  • phase diagram
  • phase boundary