People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gaisin, Ramil
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Effect of temperature on mechanical properties of beryllium intermetallic compounds fabricated by plasma sintering
- 2024Investigation of the microstructure of He+ ion-irradiated TiBe12 and CrBe12 using ex-situ transmission electron microscopycitations
- 2023Lanthanum plumbide as a new neutron multiplier material
- 2023Beryllium intermetallics: Industrial experience on development and manufacture
- 2023Microstructural insights into EUROFER97 batch 3 steels
- 2022Effect of HIP at 1000–1200 °C on microstructure and properties of extruded Be-Ti compositescitations
- 2022Effect of HIP at 1000–1200 °C on microstructure and properties of extruded Be-Ti composites
- 2020Effect of HIP at 800 and 900 °C on microstructure and properties of extruded Be-Ti composites
Places of action
Organizations | Location | People |
---|
article
Effect of HIP at 1000–1200 °C on microstructure and properties of extruded Be-Ti composites
Abstract
Solid titanium beryllide blocks will be used for neutron multiplication in the helium-cooled pebble bed (HCPB) blanket concept of EU DEMO. A combination of hot extrusion of Be-Ti powders and subsequent hot isostatic pressing (HIP) of the obtained Be-Ti composites has been proposed for manufacturing such blocks. This work is devoted to the study of the effect of HIP at 1000–1200 °C on the structure and properties of Be-Ti composites in order to optimize the HIP parameters. The HIP at 1000–1200 °C resulted in an almost single-phase titanium beryllide (TiBe$_{12}$) with small amounts of Be and other phases, which gradually dissolve with an increase in the HIP temperature. Such a treatment at 1000 and 1100 °C provides a very fine-grained microstructure of TiBe$_{12}$ with an average grain size of 0.3 and 0.6 μm, respectively. The resulting titanium beryllide is characterized by high microhardness of 1350–1480 HV$_{0.1}$ depending on the HIP temperature. According to the nanoindentation tests of the Be-Ti composite after HIP at 1100 °C, the indentation modulus of TiBe$_{12}$ can be estimated as 295 GPa. The fracture toughness of the TiBe$_{12}$ was determined as 1.5–1.7 MPa·m$^{1/2}$. The temperature of 1100 °C was chosen as optimal for the HIP of Be-Ti composites after hot extrusion. The titanium beryllide obtained in this way was used to manufacture a reduced size mockup of Ø20 mm × 18 mm. The mockup has no visible surface defects and can be used for further experiments.