Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Arsenovich, Tatyana

  • Google
  • 3
  • 23
  • 23

University of Helsinki

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectors9citations
  • 2016Processing of n(+)/p(-)/p(+) strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates14citations
  • 2014Pixel Detector Upgrade of CMS Experimentcitations

Places of action

Chart of shared publication
Peltola, T.
1 / 8 shared
Tuominen, Eija
3 / 8 shared
Ott, Jennifer
1 / 22 shared
Tuovinen, Esa
1 / 3 shared
Niinistö, J.
1 / 5 shared
Ritala, Mikko
1 / 194 shared
Luukka, Panja
3 / 14 shared
Junkes, A.
2 / 2 shared
Mäkelä, Maarit
1 / 3 shared
Härkönen, J.
2 / 6 shared
Gädda, A.
2 / 7 shared
Li, Z.
1 / 66 shared
Mäenpää, T.
1 / 1 shared
Tuovinen, E.
1 / 3 shared
Wu, X.
1 / 36 shared
Vähänen, Sami
1 / 5 shared
Kalliopuska, Juha
1 / 1 shared
Tuovinen, Esa Veikko
1 / 1 shared
Härkönen, Jaakko
1 / 10 shared
Mäenpää, Teppo H.
1 / 1 shared
Kassamakov, Ivan Vladislavov
1 / 1 shared
Karadzhinova-Ferrer, Aneliya Georgieva
1 / 7 shared
Peltola, Timo
1 / 3 shared
Chart of publication period
2016
2014

Co-Authors (by relevance)

  • Peltola, T.
  • Tuominen, Eija
  • Ott, Jennifer
  • Tuovinen, Esa
  • Niinistö, J.
  • Ritala, Mikko
  • Luukka, Panja
  • Junkes, A.
  • Mäkelä, Maarit
  • Härkönen, J.
  • Gädda, A.
  • Li, Z.
  • Mäenpää, T.
  • Tuovinen, E.
  • Wu, X.
  • Vähänen, Sami
  • Kalliopuska, Juha
  • Tuovinen, Esa Veikko
  • Härkönen, Jaakko
  • Mäenpää, Teppo H.
  • Kassamakov, Ivan Vladislavov
  • Karadzhinova-Ferrer, Aneliya Georgieva
  • Peltola, Timo
OrganizationsLocationPeople

article

Processing of n(+)/p(-)/p(+) strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

  • Li, Z.
  • Tuominen, Eija
  • Mäenpää, T.
  • Arsenovich, Tatyana
  • Tuovinen, E.
  • Wu, X.
  • Luukka, Panja
  • Junkes, A.
  • Härkönen, J.
  • Gädda, A.
Abstract

<p>Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n(+) segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current voltage and capacitance voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2 x 10(15) n(ed)/cm(2) proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed. (C) 2016 Elsevier B.V. All rights reserved.</p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • thin film
  • aluminum oxide
  • aluminium
  • Silicon
  • atomic layer deposition