People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kostoglou, Nikolaos
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Optimizing methane plasma pyrolysis for instant hydrogen and high-quality carbon productioncitations
- 2024Short-Time Magnetron Sputtering for the Development of Carbon–Palladium Nanocomposites
- 2024Asymmetric supercapacitors based on biomass-derived porous activated carbon (PAC)/1D manganese oxide (MnO2) electrodes with high power and energy densitiescitations
- 2023Improved thermolytic dehydrogenation of LiBH4 nanoconfined in few-layer graphene with different functionalitiescitations
- 2023Uniform Droplet Spraying of Magnesium Alloyscitations
- 2021Additive manufacturing of magnesium alloy using uniform droplet spraying: modeling of microstructure evolutioncitations
- 2021Synthesis of bulk reactive Ni–Al composites using high pressure torsioncitations
- 2020Effect of Pt nanoparticle decoration on the H2 storage performance of plasma-derived nanoporous graphenecitations
- 2018Novel combustion synthesis of carbon foam‑aluminum fluoride nanocomposite materialscitations
- 2018Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generationcitations
- 2017Solvothermal synthesis, nanostructural characterization and gas cryo-adsorption studies in a metal-organic framework (IRMOF-1) materialcitations
- 2017Carbon-based nanoporous materials for hydrogen storage
Places of action
Organizations | Location | People |
---|
article
Improved thermolytic dehydrogenation of LiBH4 nanoconfined in few-layer graphene with different functionalities
Abstract
In this work, lithium borohydride (LiBH4) was loaded into plasma-activated nanoporous few-layer graphene (FLG) powders with different specific surface areas (~400-800 m2/g) and functional groups (carboxyl and amine) to investigate the effect of LiBH4@FLG nanoconfinement on the dehydrogenation properties. It was observed that the dehydrogenation temperature dropped significantly from 463 oC for pure LiBH4 to ~120 oC for all LiBH4@FLG nanocomposites. This was attributed to the nano-sized pores of the FLG materials that can constrain LiBH4 by nanoconfinement and thus decrease the dehydrogenation temperature. The highest dehydrogenation yield of 83% occurred in LiBH4@FLG with 400 m2/g surface area and amine groups, possibly due to Lewis basic amino groups and better graphitic structure. Moreover, it was found that both the surface area and the graphitic defects on the FLG host materials have an influence on the dehydrogenation kinetics. LiBH4@FLG with 800 m2/g surface area and carboxyl groups possesses the lowest activation energy due to its high surface area and high concentration of<br/>graphitic defects.