People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ansari, Mohd Zahid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Numerical crashworthiness analysis of 2014 Aluminium- Silicon Carbide Particle (SiCp) foam filled Carbon Fiber-Reinforced Plastic (CFRP) tube under impact loading
- 2024Designing of high performance MoS<sub>2</sub>@VZnS//AC hybrid battery supercapacitor device for the electrochemical energy storage and glucose detectioncitations
- 2023Structural study of atomically precise doped Au38-xAgx NCs@ ZIF-8 electrode material for energy storage applicationcitations
- 2023Hole-Transport Material Engineering in Highly Durable Carbon-Based Perovskite Photovoltaic Devicescitations
- 2023Preparation of wafer-scale highly conformalamorphous hafnium dioxide thin films by atomic layer deposition using a thermally stable boratabenzene ligand-containing hafnium precursor ; Příprava vysoce konformních tenkých filmů amorfního oxidu hafničitého pomocí depozice atomární vrstvev za použití tepelně stabilního prekurzoru hafnia obsahujícího boratabenzenový ligand pokrývajících velké plochycitations
- 2023In Situ Grown Heterostructure Based on MOF-Derived Carbon Containing n-Type Zn-In-S and Dry-Oxidative p-Type CuO as Pseudocapacitive Electrode Materialscitations
- 2023Understanding the Diffusion-Dominated Properties of MOF-Derived Ni–Co–Se/C on CuO Scaffold Electrode using Experimental and First Principle Studycitations
- 2022Factors affecting the growth formation of nanostructures and their impact on electrode materialscitations
- 2022Effect of growth duration of Zn0.76Co0.24S interconnected nanosheets for high-performance flexible energy storage electrode materialscitations
- 2021Low-temperature growth of crystalline Tin(II) monosulfide thin films by atomic layer deposition using a liquid divalent tin precursor ; Nízkoteplotní růst tenkých vrstev krystalického monosulfidu cínatého pomocí depozice atomových vrstev s využitím kapalného prekurzoru dvojmocného cínucitations
Places of action
Organizations | Location | People |
---|
article
Factors affecting the growth formation of nanostructures and their impact on electrode materials
Abstract
From composites that store energy in batteries and supercapacitors, to tiny particles that enter the human body, nanocomposites are found everywhere. Depending on the applications, nanocomposites with unique and ordered structures may deliver wide range of properties beneficial to various applications. In this review, we discussed numerous factors affecting the morphology and growth of nanostructures in electrodes, such as choices for precursors (salts, co-precursors, and solvents), reaction parameters (concentration, time, temperature, pressure, and pH), type of synthesis (bulk, templated, directly grown on current collectors) and structural changes after post-treatment and post-cycling. This review will help researchers to find the responsible factors related to the growth of nanostructures that can be easily engineered and controlled. Lastly, future outlooks and sustainable approaches in synthesizing nanostructured composites not only in energy storage but also in other applications are advocated for future developments.