People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sobola, Dinara
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel<sup>®</sup> alloy 400 after ultrashort pulsed laser ablationcitations
- 2024Optical Properties of Yttrium Ferrite Films Prepared by Pulse Laser Deposition
- 2024Characterization of field emission from oxidized copper emitterscitations
- 2024Optical Properties of YttriumOrthoferrite Films Prepared by PlasmaLaser Deposition
- 2024Optical and electrical performance of translucent BaTiO3-BaSnO3 ceramicscitations
- 2024Comprehensive analysis of charge carriers dynamics through the honeycomb structure of graphite thin films and polymer graphite with applications in cold field emission and scanning tunneling microscopycitations
- 2024Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel® alloy 400 after ultrashort pulsed laser ablationcitations
- 2024Field Ion Microscopy of Tungsten Nano-Tips Coated with Thin Layer of the EpoxyResin
- 2023Exploring the Piezoelectric Properties of Bismuth Ferrite Thin Films Using Piezoelectric Force Microscopy: A Case Studycitations
- 2023Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membranecitations
- 2023Electrical characteristics of different concentration of silica nanoparticles embedded in epoxy resincitations
- 2022Nanoscale surface dynamics of RF-magnetron sputtered CrCoCuFeNi high entropy alloy thin filmscitations
- 2022Nanoscale surface dynamics of RF-magnetron sputtered CrCoCuFeNi high entropy alloy thin filmscitations
- 2022Characterization and Evaluation of Engineered Coating Techniques for Different Cutting Tools - Reviewcitations
- 2022Characterization and Evaluation of Engineered Coating Techniques for Different Cutting Tools-Reviewcitations
- 2022Advances in sustainable grinding of different types of the titanium biomaterials for medical applicationscitations
- 2022Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Depositioncitations
- 2022Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3citations
- 2021PVDF Fibers Modification by Nitrate Salts Dopingcitations
- 2021Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubescitations
- 2021Morphological features in aluminum nitride epilayers prepared by magnetron sputtering ; Morfologické detaily v AlN epivrstvách připravených magnetronovým napařovánímcitations
- 2021Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakescitations
- 2021Field emission properties of polymer graphite tips prepared by membrane electrochemical etchingcitations
- 2020Scanning proximal microscopy study of the thin layers of silicon carbide aluminum nitride solid solution manufactured by fast sublimation epitaxy ; Použitá sondového rastrovacího mikroskopu pro studium tenkých vrstev karbidu křemíku a nitridu hliníku vyrobených rychlou sublimační epitaxí
Places of action
Organizations | Location | People |
---|
article
Nanoscale surface dynamics of RF-magnetron sputtered CrCoCuFeNi high entropy alloy thin films
Abstract
High entropy alloy (HEA) thin films of CrCoCuFeNi are grown on stainless steel substrate using radiofrequency (RF) magnetron sputtering method at different sputtering times (30, 60 and 90 min), substrate temperatures (room temperature, 100 and 200 deg. Celsius) and RF powers (100, 150 and 200 W). The nanoscale morphology and topography of the thin films are obtained using an atomic force microscopy (AFM) method. The average surface roughness, interface width, fractal and multifractal characteristics of the films are presented. It is shown that the average surface roughness and interface width decrease with the time of deposition while considering the combination of the other factors. The autocorrelation and height-height correlation functions reveal that these surfaces are self-affine and exhibit fractal characteristics. The increase in sputtering power, with different combinations of time and temperature, is related to large fractal dimension and small lacunarity coefficient. The increase in substrate temperature (for different combinations with time and RF power) is shown to enhance the spatial roughness of the HEA thin films. A multifractal analysis undertaken using generalized fractal dimension, mass exponent against moment order and multifractal spectrum reveal that all the films have a multifractal character; and the films deposited at high temperatures and powers exhibit the strongest multifractal behaviour.