People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Massera, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Biophotonic composite scaffolds for controlled nitric oxide release upon NIR excitation
- 2024Crystallization mechanism of B12.5 bioactive borosilicate glasses and its impact on in vitro degradationcitations
- 2023Crystallization mechanism of B12.5 bioactive borosilicate glasses and its impact on in vitro degradationcitations
- 2023Chemical interactions in composites of gellan gum and bioactive glass: self-crosslinking and in vitro dissolutioncitations
- 2023New Mg/Sr phosphate bioresorbable glass system with enhanced sintering propertiescitations
- 2022Influence of Phosphate on Network Connectivity and Glass Transition in Highly Polymerized Aluminosilicate Glassescitations
- 2022Specific trends in phosphate glass crystallizationcitations
- 2022Robocasting of multicomponent sol-gel–derived silicate bioactive glass scaffolds for bone tissue engineeringcitations
- 2021Surface Modification of Bioresorbable Phosphate Glasses for Controlled Protein Adsorptioncitations
- 2021Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glassescitations
- 2021Specific trends in phosphate glass crystallizationcitations
- 2021Specific trends in phosphate glass crystallizationcitations
- 2020Nucleation and growth behavior of Er3+doped oxyfluorophosphate glassescitations
- 2020Dissolution, bioactivity and osteogenic properties of composites based on polymer and silicate or borosilicate bioactive glasscitations
- 2020Phosphate/oxyfluorophosphate glass crystallization and its impact on dissolution and cytotoxicitycitations
- 2019Core-clad phosphate glass fibers for biosensingcitations
- 2019Fabrication and characterization of new phosphate glasses and glass-ceramics suitable for drawing optical and biophotonic fibers
- 2018In vitro Evaluation of Porous borosilicate, borophosphate and phosphate Bioactive Glasses Scaffolds fabricated using Foaming Agent for Bone Regenerationcitations
- 2018Processing and Characterization of Bioactive Borosilicate Glasses and Scaffolds with Persistent Luminescencecitations
- 2018Persistent luminescent particles containing bioactive glassescitations
- 2018Luminescence of Er3+ doped oxyfluoride phosphate glasses and glass-ceramicscitations
- 2017Crystallization and sintering of borosilicate bioactive glasses for application in tissue engineeringcitations
- 2017Thermal, structural and in vitro dissolution of antimicrobial copper-doped and slow resorbable iron-doped phosphate glassescitations
- 2016Novel oxyfluorophosphate glasses and glass-ceramicscitations
- 2016Effect of the glass melting condition on the processing of phosphate-based glass-ceramics with persistent luminescence propertiescitations
- 2016Thermal, structural and optical properties of Er3+ doped phosphate glasses containing silver nanoparticlescitations
- 2015Processing and characterization of phosphate glasses containing CaAl2O4:Eu2+,Nd3+ and SrAl2O4:Eu2+,Dy3+ microparticlescitations
Places of action
Organizations | Location | People |
---|
article
Core-clad phosphate glass fibers for biosensing
Abstract
Recently, a phosphate glass with composition 20 CaO-20 SrO-10 Na2O-50 P2O5 (mol%) was found to have good potential as a biomaterial and to possess thermal properties suitable for fiber drawing. This study opened the path towards the development of fully bioresorbable fibers promising for biosensing. In the past, this phosphate glass with CeO2 was found to increase the refractive index and the glass stability. Therefore, a new SrO-containing glass was prepared with 1 mol% of CeO2 and core fibers were drawn from it. A core-clad fiber was also processed, where the core was a Ce-doped glass and the clad undoped, to allow for total internal reflection. The mechanical properties of the core and core-clad fibers are discussed as a function of immersion time in TRIS-buffer solution. Finally, a sensing region was created, in the core-clad fiber, by etching the cladding using phosphoric acid. Then, the change in light transmission, upon immersion in TRIS-buffer solution, was quantified to assess the potential use of the novel core-clad fiber as a biosensor. Upon immersion in TRIS, the core-clad fiber was found to guide light effectively and to maintain a tensile strength of ~150–200 MPa up to 6 weeks in TRIS, clearly showing that this fiber has potential as a biosensing device.