People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Siddiqi, S. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2016Mesenchymal stem cell (MSC) viability on PVA and PCL polymer coated hydroxyapatite scaffolds derived from cuttlefishcitations
- 2016Efficient drug delivery system for bone repair by tuning the surface of hydroxyapatite particlescitations
- 2015A study of the effect of precursors on physical and biological properties of mesoporous bioactive glasscitations
- 2015Structural, surface, in vitro bacterial adhesion and biofilm formation analysis of three dental restorative compositescitations
- 2015Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regenerationcitations
- 2014Polymer-assisted deposition of hydroxyapatite coatings using electrophoretic techniquecitations
Places of action
Organizations | Location | People |
---|
article
Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration
Abstract
Development of biodegradable composites having the ability to suppress or eliminate the pathogenic micro-biota or modulate the inflammatory response has attracted great interest in order to limit/repair periodontal tissue destruction. The present report includes the development of non-steroidal anti-inflammatory drug encapsulated novel biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) electro-spun (e-spun) composite nanofibrous mats and films and study of the effect of heat treatment on fibers and films morphology. It also describes comparative in-vitro drug release profiles from heat treated and control (non-heat treated) nanofibrous mats and films containing varying concentrations of piroxicam (PX). Electrospinning was used to obtain drug loaded ultrafine fibrous mats. The physical/chemical interactions were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). The thermal behavior of the materials was investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Control (not heat treated) and heat treated e-spun fibers mats and films were tested for in vitro drug release studies at physiological pH 7.4 and initially, as per requirement burst release patterns were observed from both fibers and films and later sustained release profiles were noted. In vitro cytocompatibility was performed using VERO cell line of epithelial cells and all the synthesized materials were found to be non-cytotoxic. The current observations suggested that these materials are potential candidates for periodontal regeneration. © 2015 Elsevier B.V. All rights reserved.