People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bhadra, S. K.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2011Double-pass erbium-doped zirconia fiber amplifier for wide-band and flat-gain operationscitations
- 2010Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifierscitations
- 2010Wideband EDFA based in erbium doped crystalline zirconia yttria alumino silicate fibercitations
- 2010Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preformcitations
- 2010Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkeningcitations
- 2009All Fibre based Hydrogen Sensing using Palladium coated Long Period Gratings
- 2009Ytterbium doped nanostructured optical fibers for high power fiber lasers
Places of action
Organizations | Location | People |
---|
article
Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform
Abstract
Yb<sub>2</sub>O<sub>3</sub>-doped yttrium aluminium garnet (YAG) nano-crystals within the silicate glass-based optical fiber preforms were obtained through the conventional-modified chemical vapour deposition (MCVD) and solution doping technique. Nano-crystals were developed with soaking of the porous phospho-silica or pure silica core layer in a solution containing the ytterbium, yttrium and other co-dopants, including fluorine using 10-15% fluorosilicic acid, and through post-annealing of the preform at a temperature of around 1450 °C. The size, shape and nature of Yb<sub>2</sub>O<sub>3</sub>-doped phase-separated nano-crystallites were evaluated from HRTEM images along with the electron diffraction pattern based on the doping levels of phosphorous and fluorine. The size of nano-crystallites was maintained within 6-10 nm when doped with 0.25 mole% of fluorine. X-ray analyses EDX data reveals that the nano-particles are rich in Yb:YAG, and uniformly dispersed into the amorphous silica glass matrix. The novelty of this technique involves the direct synthesis of rare-earth doped phase-separated nano-crystallites within the core region of silica glass preforms. This class of fibers containing the nano-particles with or without Yb:YAG crystalline nature will keep the advantage of the mechanical properties as well as good lasing properties under high power application compared to the Yb:YAG ceramic laser.