People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lopes, João G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Evolution of microstructure and deformation mechanisms in a metastable Fe42Mn28Co10Cr15Si5 high entropy alloycitations
- 2024Unveiling the microstructure evolution and mechanical properties in a gas tungsten arc-welded Fe–Mn–Si–Cr–Ni shape memory alloycitations
- 2024In-situ microstructural evolution during tensile loading of CoCrFeMnNi high entropy alloy welded joint probed by high energy synchrotron X-ray diffraction
- 2024Revealing microstructural evolution and mechanical properties of resistance spot welded NiTi-stainless steel with Ni or Nb interlayercitations
- 2024Wire arc additive manufacturing of a high-strength low-alloy steel part: environmental impacts, costs, and mechanical propertiescitations
- 2024Wire arc additive manufacturing of a high-strength low-alloy steel part ; environmental impacts, costs, and mechanical propertiescitations
- 2024Microstructure gradients across the white etching and transition layers of a heavy haul pearlitic steelcitations
- 2023Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloycitations
- 2023Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSDcitations
- 2023Evolution of microstructure and mechanical properties in gas tungsten arc welded dual-phase Fe50Mn30Co10Cr10 high entropy alloycitations
- 2022Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloycitations
- 2022Improving the ductility in laser welded joints of CoCrFeMnNi high entropy alloy to 316 stainless steelcitations
- 2022Improving the ductility in laser welded joints of CoCrFeMnNi high entropy alloy to 316 stainless steelcitations
- 2022The influence of in-situ alloying of electro-spark deposited coatings on the multiscale morphological and mechanical properties of laser welded Al–Si coated 22MnB5citations
- 2020Effect of milling parameters on HSLA steel parts produced by Wire and Arc Additive Manufacturing (WAAM)citations
- 2020Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloycitations
Places of action
Organizations | Location | People |
---|
article
Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloy
Abstract
Funding Information: JS, JGL and JPO acknowledge Fundação para a Ciência e a Tecnologia (FCT - MCTES) for its financial support via the project UID/00667/2020 (UNIDEMI). JS acknowledges the China Scholarship Council for funding the Ph.D. grant (CSC NO. 201808320394). The authors acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Beamtime was allocated for proposal I-20220492 EC. Publisher Copyright: © 2023 The Authors ; Weldability studies on high entropy alloys are still relatively scarce, delaying the deployment of these materials into real-life applications. Thus, there is an urgent need for in-depth studies of the weldability of these novel advanced engineering alloys. In the current work, an as-cast Fe42Mn28Co10Cr15Si5 metastable high entropy alloy was welded for the first time using gas tungsten arc welding. The weld thermal cycle effect on the microstructure evolution over the welded joint was examined using electron microscopy in combination with electron backscatter diffraction, synchrotron X-ray diffraction analysis, and thermodynamic calculations. Furthermore, tensile testing and hardness mapping were correlated with the microstructure evolution. The microstructure evolution across the joint is unveiled, including the origin of the ε-h.c.p. phase at different locations of the material. Different strengthening effects measured throughout the joint are associated with the weld thermal cycle and resulting microstructure. A synergistic effect of smaller grain size of the ε-h.c.p. phase in the fusion zone, overturns the reduced volume fraction of this phase, increasing the local strength of the material. Moreover, the brittle nanosized σ phase was also found to play a critical role in the joints’ premature failure during mechanical testing. ; publishersversion ; published