People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Syed, Abdul Khadar
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Defect tolerance and fatigue limit prediction for laser powder bed fusion Ti6Al4Vcitations
- 2023Fatigue crack growth behavior in an aluminum alloy Al–Mg–0.3Sc produced by wire based directed energy deposition processcitations
- 2023Strain controlled fatigue behaviour of a wire + arc additive manufactured Ti-6Al-4Vcitations
- 2022Cyclic plasticity and damage mechanisms of Ti-6Al-4V processed by electron beam meltingcitations
- 2021Effect of deposition strategies on fatigue crack growth behaviour of wire+ arc additive manufactured titanium alloy Ti-6Al-4Vcitations
- 2021Influence of deposition strategies on tensile and fatigue properties in a wire + arc additive manufactured Ti-6Al-4Vcitations
- 2021Effect of deposition strategies on fatigue crack growth behaviour of wire + arc additive manufactured titanium alloy Ti–6Al–4Vcitations
- 2020High cycle fatigue and fatigue crack growth rate in additive manufactured titanium alloyscitations
- 2020The role of microstructure and local crystallographic orientation near porosity defects on the high cycle fatigue life of an additive manufactured Ti-6Al-4Vcitations
- 2019Microstructure and mechanical properties of as-built and heat-treated electron beam melted Ti–6Al–4Vcitations
- 2019A critical evaluation of the microstructural gradient along the build direction in electron beam melted Ti-6Al-4V alloycitations
- 2019Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloycitations
- 2019High cycle fatigue and fatigue crack growth rate in additive manufactured titanium alloyscitations
- 2019Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloycitations
- 2019Interrupted fatigue testing with periodic tomography to monitor porosity defects in wire + arc additive manufactured Ti-6Al-4Vcitations
- 2019An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4Vcitations
- 2018A comparison of fatigue crack growth performance of two aerospace grade aluminium alloys reinforced with bonded crack retarderscitations
- 2018Experimental and numerical analysis of flexural and impact behaviour of glass/pp sandwich panel for automotive structural applicationscitations
- 2018Mapping residual strain induced by cold working and by laser shock peening using neutron transmission spectroscopycitations
- 2017Fatigue performance of bonded crack retarders in the presence of cold worked holes and interference-fit fasteners
- 2017Fatigue performance of bonded crack retarders in the presence of cold worked holes and interference-fit fastenerscitations
- 2014Durability of bonded crack retarders for aerospace
Places of action
Organizations | Location | People |
---|
article
Effect of deposition strategies on fatigue crack growth behaviour of wire + arc additive manufactured titanium alloy Ti–6Al–4V
Abstract
The influence of three deposition strategies on the fatigue crack growth behaviour of Wire + Arc Additive Manufactured (WAAM) Ti–6Al–4V has been investigated in the as-built condition. Test samples were prepared using single pass, parallel pass, and oscillation deposition strategies and tested with cracks propagating parallel and normal to the plane of deposition. Due to the higher local heat input, the oscillation build exhibited a significantly coarser columnar β grain structure as well as a coarser transformation microstructure, compared to the single pass and parallel pass builds, which were very similar. Among the three build methods, the lowest crack growth rates were found with the oscillation build. The crack growth data was found to broadly fall between that of a recrystallized α (mill-annealed) and β annealed wrought material, with the oscillation strategy build behaving more similarly to a β annealed microstructure. The fatigue crack growth rate was lower when cracks were propagated perpendicular to the build layers. For each build strategy, a greater microstructural influence on crack growth rate was found at lower levels of stress intensity factor range (<25 MPa m1/2). However, the anisotropy and scatter in the data was much more significant in the case of the oscillation build. These differences have been attributed to the stronger α microtexture heterogeneity present in the oscillation build, which led to a greater crack deflection and bifurcation, giving rise to lower crack growth rates and a higher sensitivity to the anisotropy caused by the directional β grain structure.