People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mottura, Alessandro
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024First-principles calculations of intrinsic stacking fault energies and elastic properties in binary nickel alloyscitations
- 2018First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys
- 2018First-principles modeling of the temperature dependence for the superlattice intrinsic stacking fault energies in L12 Ni75-xXxAl25 alloyscitations
- 2018A kinetic Monte Carlo study of vacancy diffusion in non-dilute Ni-Re alloyscitations
- 2017First-principles calculations of thermodynamic properties and planar fault energies in Co3X and Ni3X L12 compoundscitations
- 2016Alloys-by-designcitations
- 2015High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloyscitations
- 2014Three-dimensional characterization of the permeability of W–Cu composites using a new “TriBeam” techniquecitations
- 2014Can slow-diffusing solute atoms reduce vacancy diffusion in advanced high-temperature alloys?citations
- 2014Nickel-rhenium compound sheds light on the potency of rhenium as a strengthener in high-temperature nickel alloyscitations
- 2014Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloyscitations
- 2012A first-principles study of the effect of Ta on the superlattice intrinsic stacking fault energy of L12-Co3(Al,W)citations
- 2010Atom probe tomography analysis of the distribution of rhenium in nickel alloyscitations
- 2010Analysis of atomic-scale phenomena and the rhenium effect in nickel superalloys
- 2008A critique of rhenium clustering in Ni-Re alloys using extended X-ray absorption spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Can slow-diffusing solute atoms reduce vacancy diffusion in advanced high-temperature alloys?
Abstract
The high-temperature mechanical properties of precipitate-strengthened advanced alloys can be heavily influenced by adjusting chemical composition. The widely-accepted argument within the community is that, under certain temperature and loading conditions, plasticity occurs only in the matrix, and dislocations have to rely on thermally-activated climb mechanisms to overcome the barriers to glide posed by the hard precipitates. This is the case for γ′-strengthened Ni-based superalloys. The presence of dilute amounts of slow-diffusing solute atoms, such as Re and W, in the softer matrix phase is thought to reduce plasticity by retarding the climb of dislocations at the interface with the hard precipitate phase. One hypothesis is that the presence of these solutes must hinder the flow of vacancies, which are essential to the climb process. In this work, density functional theory calculations are used to inform two analytical models to describe the effect of solute atoms on the diffusion of vacancies. Results suggest that slow-diffusing solute atoms are not effective at reducing the diffusion of vacancies in these systems.