People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wang, Ling
Isaac Newton Group
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Nanoarchitectonics of Nanocellulose Filament Electrodes by Femtosecond Pulse Laser Deposition of ZnO and In Situ Conjugation of Conductive Polymerscitations
- 2023Mechanistic study of dark etching regions in bearing steels due to rolling contact fatiguecitations
- 2023Mechanistic study of dark etching regions in bearing steels due to rolling contact fatiguecitations
- 2023An innovative hybrid approach for better detection of bearing faults in highly noisy environments
- 2023A study on the three key concepts of White Etching Crack failure mode in its very early stages - contrast with different testing methodscitations
- 2022Carbonate‐Induced Electrosynthesis of Hydrogen Peroxide via Two‐Electron Water Oxidationcitations
- 2022White etching bands formation mechanisms due to rolling contact fatiguecitations
- 2022White etching bands formation mechanisms due to rolling contact fatiguecitations
- 2022Electrical discharges in oil-lubricated rolling contacts and their detection using electrostatic sensing techniquecitations
- 2021Semi-empirical model for predicting LAB and HAB formation in bearing steelscitations
- 2021Semi-empirical model for predicting LAB and HAB formation in bearing steelscitations
- 2021Lignin effect in castor oil-based elastomers: Reaching new limits in rheological and cushioning behaviorscitations
- 2021Lignin effect in castor oil-based elastomers: Reaching new limits in rheological and cushioning behaviorscitations
- 2021Effective Hydrogen Peroxide Production from Electrochemical Water Oxidationcitations
- 2021A study on the initiation processes of white etching cracks (WECs) in AISI 52100 bearing steelcitations
- 2020Re-investigation of dark etching regions and white etching bands in SAE 52100 bearing steel due to rolling contact fatiguecitations
- 2020Re-investigation of dark etching regions and white etching bands in SAE 52100 bearing steel due to rolling contact fatiguecitations
- 2020Mesoporous Carbon Microfibers for Electroactive Materials Derived from Lignocellulose Nanofibrilscitations
- 2019Microcrystalline cellulose as filler in polycaprolactone matrices
- 2019Conductive Carbon Microfibers Derived from Wet-Spun Lignin/Nanocellulose Hydrogelscitations
- 2019The effect of over-based calcium sulfonate detergent additives on white etching crack (WEC) formation in rolling contact fatigue tested 100Cr6 steelcitations
- 2019Photovoltaic and antimicrobial potentials of electrodeposited copper nanoparticlecitations
- 2017Electron microscopy investigations of microstructural alterations due to classical Rolling Contact Fatigue (RCF) in martensitic AISI 52100 bearing steelcitations
- 2017Microstructural changes in White Etching Cracks (WECs) and their relationship with those in Dark Etching Region (DER) and White Etching Bands (WEBs) due to Rolling Contact Fatigue (RCF)citations
- 2017Intrinsic osteoinductivity of porous titanium scaffold for bone tissue engineeringcitations
- 2014Confirming subsurface initiation at non-metallic inclusions as one mechanism for white etching crack (WEC) formationcitations
- 2013Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF)citations
- 2013A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steelcitations
- 2013White etching crack (WEC) investigation by serial sectioning, focused ion beam and 3-D crack modellingcitations
- 2007Real-time monitoring of wear debris using electrostatic sensing techniquescitations
- 2007Pulse phase thermography (PPT): potential characterisation technology for grossly sculpted surfaces
- 2003Wear performance of oil lubricated silicon nitride sliding against various bearing steelscitations
Places of action
Organizations | Location | People |
---|
article
A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steel
Abstract
Butterflies are microscopic damage features forming at subsurface material imperfections induced during rolling contact fatigue (RCF) in rolling element bearings. Butterflies can lead to degradation of the load bearing capacity of the material by their associated cracks causing premature spalling failures. Recently, butterfly formation has been cited to be related to a premature failure mode in wind turbine gearbox bearings; white structure flaking (WSF). Butterflies consist of cracks with surrounding microstructural change called ‘white etching area’ (WEA) forming wings that revolve around their initiators. The formation mechanisms of butterflies in bearing steels have been studied over the last 50 years, but are still not fully understood. This paper presents a detailed microstructural analysis of a butterfly that has initiated from a void in standard 100Cr6 bearing steel under rolling contact fatigue on a laboratory two-roller test rig under transient operating conditions. Analysis was conducted using focused ion beam (FIB) tomography, 3D reconstruction and transmission electron microscopy (STEM/ TEM) methods. FIB tomography revealed an extensive presence of voids/cavities immediately adjacent to the main crack on the non-WEA side and at the crack tip. This provides evidence for a void/cavity coalescence mechanism for the butterfly cracks formation. Spherical M3C carbide deformation and dissolution as part of the microstructural change in WEA were observed in both FIB and STEM/TEM analyses, where TEM analyses also revealed the formation of superfine nano-grains (3–15 nm diameter) intersecting a dissolving spherical M3C carbide. This is evidence of the early formation of nano-grains associated with the WEA formation mechanism.