Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cecchini, R.

  • Google
  • 10
  • 41
  • 173

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2022Large Spin-to-Charge Conversion at Room Temperature in Extended Epitaxial Sb2Te3 Topological Insulator Chemically Grown on Silicon36citations
  • 2021Large-Area MOVPE Growth of Topological Insulator Bi2Te3Epitaxial Layers on i-Si(111)11citations
  • 2021Phase change Ge-rich Ge–Sb–Te/Sb2Te3 core-shell nanowires by metal organic chemical vapor deposition5citations
  • 2021MOCVD growth of GeTe/Sb2Te3 core–shell nanowires6citations
  • 2021Large-Area MOVPE Growth of Topological Insulator Bi2Te3 Epitaxial Layers on i-Si(111)11citations
  • 2020ALD growth of ultra-thin Co layers on the topological insulator Sb2Te314citations
  • 2020ALD growth of ultra-thin Co layers on the topological insulator Sb2Te314citations
  • 2020Ferromagnetic resonance of Co thin films grown by atomic layer deposition on the Sb2Te3 topological insulator13citations
  • 2016Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires20citations
  • 2012An international round-robin calibration protocol for nanoindentation measurements43citations

Places of action

Chart of shared publication
Locatelli, L.
3 / 5 shared
Gubbiotti, G.
2 / 7 shared
Mantovan, R.
6 / 14 shared
Wiemer, C.
9 / 28 shared
Longo, M.
9 / 22 shared
Tsipas, P.
1 / 6 shared
Belli, M.
2 / 4 shared
Rimoldi, M.
1 / 2 shared
Longo, E.
4 / 11 shared
Dimoulas, A.
1 / 11 shared
Alia, M.
1 / 2 shared
Fanciulli, M.
5 / 28 shared
Kumar, A.
4 / 94 shared
Nasi, L.
2 / 11 shared
Lazzarini, L.
5 / 11 shared
Martella, C.
2 / 5 shared
Calarco, R.
2 / 16 shared
Mussi, V.
2 / 7 shared
De Simone, S.
2 / 2 shared
Scuderi, M.
2 / 6 shared
Nicotra, G.
2 / 14 shared
H., Winter C.
2 / 2 shared
D., Overbeek M.
2 / 2 shared
Trevisi, G.
2 / 7 shared
Tallarida, G.
3 / 6 shared
Winter, Ch
1 / 1 shared
Overbeek, Md
1 / 1 shared
Cantoni, M.
1 / 14 shared
Rinaldi, C.
1 / 12 shared
Rotunno, E.
1 / 7 shared
Cecchi, S.
1 / 14 shared
Pogany, D.
1 / 2 shared
Lugstein, A.
1 / 7 shared
Rigato, M.
1 / 1 shared
Selmo, S.
1 / 1 shared
Cohen, Sidney
1 / 29 shared
Dub, S.
1 / 2 shared
Cabibbo, M.
1 / 30 shared
Ricci, P.
1 / 3 shared
Rymuza, Z.
1 / 1 shared
Sullivan, J.
1 / 2 shared
Chart of publication period
2022
2021
2020
2016
2012

Co-Authors (by relevance)

  • Locatelli, L.
  • Gubbiotti, G.
  • Mantovan, R.
  • Wiemer, C.
  • Longo, M.
  • Tsipas, P.
  • Belli, M.
  • Rimoldi, M.
  • Longo, E.
  • Dimoulas, A.
  • Alia, M.
  • Fanciulli, M.
  • Kumar, A.
  • Nasi, L.
  • Lazzarini, L.
  • Martella, C.
  • Calarco, R.
  • Mussi, V.
  • De Simone, S.
  • Scuderi, M.
  • Nicotra, G.
  • H., Winter C.
  • D., Overbeek M.
  • Trevisi, G.
  • Tallarida, G.
  • Winter, Ch
  • Overbeek, Md
  • Cantoni, M.
  • Rinaldi, C.
  • Rotunno, E.
  • Cecchi, S.
  • Pogany, D.
  • Lugstein, A.
  • Rigato, M.
  • Selmo, S.
  • Cohen, Sidney
  • Dub, S.
  • Cabibbo, M.
  • Ricci, P.
  • Rymuza, Z.
  • Sullivan, J.
OrganizationsLocationPeople

article

An international round-robin calibration protocol for nanoindentation measurements

  • Cohen, Sidney
  • Dub, S.
  • Cabibbo, M.
  • Ricci, P.
  • Rymuza, Z.
  • Sullivan, J.
  • Cecchini, R.
Abstract

Nanoindentation has become a common technique for measuring the hardness and elastic-plastic properties of materials, including coatings and thin films. In recent years, different nanoindenter instruments have been commercialised and used for this purpose. Each instrument is equipped with its own analysis software for the derivation of the hardness and reduced Young's modulus from the raw data. These data are mostly analysed through the Oliver and Pharr method. In all cases, the calibration of compliance and area function is mandatory. The present work illustrates and describes a calibration procedure and an approach to raw data analysis carried out for six different nanoindentation instruments through several round-robin experiments. Three different indenters were used, Berkovich, cube corner, spherical, and three standardised reference samples were chosen, hard fused quartz, soft polycarbonate, and sapphire. It was clearly shown that the use of these common procedures consistently limited the hardness and reduced the Young's modulus data spread compared to the same measurements performed using instrument-specific procedures. The following recommendations for nanoindentation calibration must be followed: (a) use only sharp indenters, (b) set an upper cut-off value for the penetration depth below which measurements must be considered unreliable, (c) perform nanoindentation measurements with limited thermal drift, (d) ensure that the load-displacement curves are as smooth as possible, (e) perform stiffness measurements specific to each instrument/indenter couple, (f) use Fq and Sa as calibration reference samples for stiffness and area function determination, (g) use a function, rather than a single value, for the stiffness and (h) adopt a unique protocol and software for raw data analysis in order to limit the data spread related to the instruments (i.e. the level of drift or noise, defects of a given probe) and to make the H and E r data intercomparable.

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • thin film
  • hardness
  • nanoindentation
  • defect