Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Azapagic, Adisa

  • Google
  • 2
  • 8
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Spray coating of 2D materials in the production of antifouling membranes for membrane distillation8citations
  • 2019Environmental impacts of copper‑indium‑gallium-selenide (CIGS) photovoltaics and the elimination of cadmium through atomic layer deposition48citations

Places of action

Chart of shared publication
Asuquo, Edidiong
1 / 1 shared
Mercadillo, Vicente Orts
1 / 4 shared
Luque-Alled, Jose Miguel
1 / 9 shared
Gorgojo, Patricia
1 / 26 shared
Alberto, Monica
1 / 10 shared
Skuse, Clara
1 / 1 shared
Gallego Schmid, Alejandro
1 / 2 shared
Stamford, Laurence
1 / 1 shared
Chart of publication period
2024
2019

Co-Authors (by relevance)

  • Asuquo, Edidiong
  • Mercadillo, Vicente Orts
  • Luque-Alled, Jose Miguel
  • Gorgojo, Patricia
  • Alberto, Monica
  • Skuse, Clara
  • Gallego Schmid, Alejandro
  • Stamford, Laurence
OrganizationsLocationPeople

article

Spray coating of 2D materials in the production of antifouling membranes for membrane distillation

  • Azapagic, Adisa
  • Asuquo, Edidiong
  • Mercadillo, Vicente Orts
  • Luque-Alled, Jose Miguel
  • Gorgojo, Patricia
  • Alberto, Monica
  • Skuse, Clara
  • Gallego Schmid, Alejandro
Abstract

Membrane surface coatings with 2D materials have been shown to exhibit antifouling properties for water-treatment applications; however, synthesis methods currently based on vacuum filtration are not easily scalable. This study describes a scalable method for coating membranes with a range of 2D materials including graphene oxide (GO), hexagonal boron nitride (hBN), molybdenum disulphide (MoS<sub>2</sub>) and tungsten disulphide (WS<sub>2</sub>). Isopropyl alcohol solutions containing each class of the 2D flakes were spray-coated onto commercial polyvinylidene fluoride (PVDF) using a pyrolyser. The nanomaterials were secured with polydopamine (PDA) as a crosslinker in a method that could easily be integrated into a scalable roll-to-roll process. Changes in morphology, surface roughness, hydrophobicity, mechanical durability and chemical composition were evaluated using scanning electron microscopy, atomic force microscopy, contact angle, tensile strength measurements and Fourier-transform infrared spectroscopy. The 2D nanomaterials-coated membranes were tested in membrane distillation (MD) experiments over 72 h and compared to pristine PVDF and PDA/PVDF membranes. Salt rejection and MD performance stability were evaluated using feedwaters with high concentrations of humic acid (150 ppm) and paraffin oil (200 ppm) simulating simple organic wastewater from oil and gas extraction. The flux decline ratio was measured in terms of percentage permeate loss per hour (%/h), to allow for future comparisons with studies with different experimental times. The pristine PVDF membrane failed after 10 h by pore-wetting due to fouling while the PDA/PVDF membrane had the largest flux decline ratio (0.3 %/h). The membranes coated with GO and hBN had flux decline ratios orders of magnitude lower (0.0021 ± 0.005 and 0.028 ± 0.01 %/h, respectively). All membranes had a high salt rejection (&gt;99.9 %). The GO-coated membrane was the only membrane type that was able to treat both surfactant-containing and foulant-containing feedwaters. The improved performance is attributed to the decrease in both surface roughness and hydrophobicity, which reduces the adsorption of foulants onto the membrane surface. This work shows a facile, scalable method to overcome fouling limitations in MD.<br/><br/>

Topics
  • impedance spectroscopy
  • pore
  • morphology
  • surface
  • molybdenum
  • scanning electron microscopy
  • experiment
  • atomic force microscopy
  • extraction
  • molecular dynamics
  • nitride
  • strength
  • chemical composition
  • Boron
  • tensile strength
  • durability
  • tungsten
  • alcohol
  • spray coating
  • surfactant
  • distillation
  • infrared spectroscopy