Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saren, Andrey

  • Google
  • 1
  • 7
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Multi-instrumental approach to domain walls and their movement in ferromagnetic steels – Origin of Barkhausen noise studied by microscopy techniques12citations

Places of action

Chart of shared publication
Ullakko, Kari
1 / 5 shared
Laurson, Lasse
1 / 19 shared
Vippola, Minnamari
1 / 58 shared
Santa-Aho, Suvi Tuulikki
1 / 22 shared
Kaappa, Sami
1 / 6 shared
Honkanen, Mari Hetti
1 / 59 shared
Azzari, Lucio
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ullakko, Kari
  • Laurson, Lasse
  • Vippola, Minnamari
  • Santa-Aho, Suvi Tuulikki
  • Kaappa, Sami
  • Honkanen, Mari Hetti
  • Azzari, Lucio
OrganizationsLocationPeople

article

Multi-instrumental approach to domain walls and their movement in ferromagnetic steels – Origin of Barkhausen noise studied by microscopy techniques

  • Ullakko, Kari
  • Laurson, Lasse
  • Vippola, Minnamari
  • Saren, Andrey
  • Santa-Aho, Suvi Tuulikki
  • Kaappa, Sami
  • Honkanen, Mari Hetti
  • Azzari, Lucio
Abstract

Two steels, ferrite and ferrite-pearlite were thoroughly characterized by a multi-instrumental microscopy techniques to get detailed information about their microstructure and magnetic structure. Microstructural features act as pinning sites for the motion of magnetic domain walls (DWs) leading to changes in the magnetization of the sample. This phenomenon is the basis for industrially relevant non-destructive Barkhausen noise (BN) technique. With magnetic force microscopy (MFM), using bulk samples, and Lorentz microscopy, using thin films, we noticed that bulk and thin samples have similar domain structure still giving different BN signal amplitudes. We could explain an in-plane DW movement under out-of-plane applied magnetic field using anisotropy energetics. In-situ transmission electron microscopy (TEM) in Lorentz mode was used to visualize the motion of DWs and their interactions with different pinning sites. To help the interpretation of DW motions, alignment and denoising processes were tailored for in-situ TEM studies. Multi-instrumental and multidimensional structural analysis enabled us to visualize and verify many theoretical hypotheses related to the origin of BN signal in ferrite and ferrite-pearlite steels. ; Peer reviewed

Topics
  • impedance spectroscopy
  • microstructure
  • thin film
  • steel
  • transmission electron microscopy
  • magnetization
  • magnetic domain wall
  • magnetic force microscope