Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Huisman, Gijs

  • Google
  • 3
  • 6
  • 28

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Shape memory alloy actuators for haptic wearables21citations
  • 2023Exploring shape memory alloys in haptic wearables for visually impaired people4citations
  • 2012Follow the Grass: a Smart Material Interactive Pervasive Display3citations

Places of action

Chart of shared publication
Ghodrat, Sepideh
2 / 7 shared
Liu, Qiang
1 / 12 shared
Jansen, Kaspar
1 / 48 shared
Sandhir, P.
1 / 1 shared
Nijholt, Anton
1 / 11 shared
Minuto, A.
1 / 8 shared
Chart of publication period
2023
2012

Co-Authors (by relevance)

  • Ghodrat, Sepideh
  • Liu, Qiang
  • Jansen, Kaspar
  • Sandhir, P.
  • Nijholt, Anton
  • Minuto, A.
OrganizationsLocationPeople

document

Shape memory alloy actuators for haptic wearables

  • Ghodrat, Sepideh
  • Liu, Qiang
  • Jansen, Kaspar
  • Huisman, Gijs
Abstract

<p>Devices delivering sophisticated and natural haptic feedback often encompass numerous mechanical elements, leading to increased sizes and wearability challenges. Shape memory alloys (SMAs) are lightweight, compact, and have high power-to-weight ratios, and thus can easily be embedded without affecting the overall device shapes. Here, a review of SMA-based haptic wearables is provided. The article starts with an introduction of SMAs, while incorporating analyses of relevant devices documented in the literature. Haptic and SMA materials fields are correlated, with haptic perception insights aiding SMA actuator design, and distinct SMA mechanisms offering diverse haptic feedback types. A design process for SMA haptic wearables is proposed based on material-centered approach. We show SMAs hold potential for haptic devices aiding visually impaired people and promise in immersive technology and remote interpersonal haptic communication.</p>

Topics
  • impedance spectroscopy