People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Goldberg, Moshe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2018A comprehensive study on surface quality in 5-axis milling of SLM Ti-6Al-4V spherical componentscitations
- 2018Characterizing the effect of cutting condition, tool path, and heat treatment on cutting forces of selective laser melting spherical component in five-axis millingcitations
- 2017Production of Ti-6Al-4V acetabular shell using selective laser meltingcitations
- 2017On the role of different annealing heat treatments on mechanical properties and microstructure of selective laser melted and conventional wrought Ti-6Al-4Vcitations
- 2016An improved static model for tool deflection in machining of Ti–6Al–4V acetabular shell produced by selective laser meltingcitations
- 2016A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cupcitations
Places of action
Organizations | Location | People |
---|
article
A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cup
Abstract
<p>Additive Manufacturing (AM) includes a range of approaches that correlate with computer aided design (CAD) and manufacturing by fabrication via precise layers and is a promising method for the production of medical tools. In this study, different aspects and mechanisms of solidification for curved surfaces based on equilibrium at curved interfaces, Monge patch, interfacial and Gibbs energy will be discussed. Also, the effect of capillarity, geometry, substrate temperature, cooling rate and scanning parameters in the solidification of a prosthetic acetabular cup (PAC) using selective laser melting (SLM) is analysed. The contributions of this work are analysing solidification and effective factors in this process to produce parts with a higher quality and mechanical properties such as strength, strain, porosity, relative density and hardness. Results indicate that due to the surface to volume (S/V) ratio, and the increasing effect of the radius on Monge patch, thermal stresses and surface forces are more prevalent on outer surfaces. Moreover, solidification and mechanical properties are related to capillarity, geometry, substrate temperature, cooling rate, scanning power and speed. The results also indicate the interaction of solute diffusion and heat transfer with interatomic forces in large S/V ratio and at small scales tend to improve solidification.</p>