Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Piard, Jc

  • Google
  • 1
  • 3
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Pseudomonas grimontii biofilm protects food contact surfaces from Escherichia coli colonization19citations

Places of action

Chart of shared publication
Gomes, Lc
1 / 11 shared
Briandet, R.
1 / 1 shared
Mergulhao, Fj
1 / 9 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Gomes, Lc
  • Briandet, R.
  • Mergulhao, Fj
OrganizationsLocationPeople

article

Pseudomonas grimontii biofilm protects food contact surfaces from Escherichia coli colonization

  • Gomes, Lc
  • Briandet, R.
  • Mergulhao, Fj
  • Piard, Jc
Abstract

Escherichia coli typically colonizes food contact surfaces in the presence of other bacterial strains. The aim of this work was to evaluate the influence of a resident strain isolated from a fresh-cut salad industry (Pseudomonas grimontii 13A10) on the development of a model pathogen (E. coli) on bare stainless steel (SST) and stainless steel coated with diamond-like carbon (DLC) films, a-C:H:Si:0 designated by SICON (R) and a-C:H:Si designated by SICAN. The bacterial composition and spatial organization of single- and dual-species biofilms were analyzed by confocal laser scanning microscopy (CLSM). Biofilms were developed for 1 and 3 days at 10 degrees C and it was observed that the biovolume of E. coli biofilms in the presence of P. grimontii was lower than in axenic conditions, suggesting that the isolate can protect food contact surfaces from pathogen colonization. After 3 days, the dual-species biofilms contained essentially P. grimontii cells and no preferential vertical distribution of bacterial strains was observed. The use of a-C:H:Si:O coated surfaces reduced the short-term colonization of the model pathogen in single- and dual species biofilms, whereas decreased colonization by the non-pathogenic strain was only observed after 3 days.

Topics
  • surface
  • Carbon
  • stainless steel
  • confocal laser scanning microscopy