People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nielsen, Jimmy
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2016Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodescitations
- 2015Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodescitations
- 2015Investigation of Novel Electrocatalysts for Metal Supported Solid Oxide Fuel Cells - Ru:GDCcitations
- 2014Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodescitations
- 2013Infiltrated SrTiO3:FeCr‐based Anodes for Metal‐Supported SOFCcitations
- 2012Characterization of a well performing and durable Ni:CGO-infiltrated anode for metal-supported SOFC
- 2012Detailed impedance characterization of a well performing and durable Ni:CGO infiltrated cermet anode for metal-supported solid oxide fuel cellscitations
- 2012Infiltrated SrTiO3:FeCr-based anodes for metalsupported SOFC
- 2012Durable and Robust Solid Oxide Fuel Cells
- 2012Break-down of Losses in High Performing Metal-Supported Solid Oxide Fuel Cells
- 2012Characterization of impregnated GDC nano structures and their functionality in LSM based cathodescitations
- 2011SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy studycitations
- 2011High performance metal-supported solid oxide fuel cells with Gd-doped ceria barrier layerscitations
- 2011Impedance of porous IT-SOFC LSCF:CGO composite cathodescitations
Places of action
Organizations | Location | People |
---|
article
Detailed impedance characterization of a well performing and durable Ni:CGO infiltrated cermet anode for metal-supported solid oxide fuel cells
Abstract
Further knowledge of the novel, well performing and durable Ni:CGO infiltrated cermet anode for metal supported fuel cells has been acquired by means of a detailed impedance spectroscopy study. The anode impedance was shown to consist of three arcs. Porous electrode theory (PET) represented as a transmission line response could account for the intermediate frequency arc. The PET model enabled a detailed insight into the effect of adding minor amounts of Ni into the infiltrated CGO and allowed an estimation of important characteristics such as the electrochemical utilization thickness of the anode. Furthermore, the study also revealed that the observed high frequency impedance arc cannot solely be a consequence of the grain boundaries within the electrolyte as previous studies have assumed. Instead, the results pointed towards an oxide ion charge transfer resistance between the electrolyte and the infiltrated anode. The low frequency impedance arc was in accordance with previous studies interpreted to be associated with the gas concentration. Finally, the robustness of the infiltration towards sintering and/or agglomeration at elevated temperature was studied. The results showed that the performance of the infiltrated submicron sized particles was surprisingly robust. TEM analysis revealed the nano sized Ni particles to be trapped within the CGO matrix, which along the self limiting grain growth of the CGO seem to be able to stabilize the submicron structured anode.