Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumar, Satish

  • Google
  • 21
  • 43
  • 455

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (21/21 displayed)

  • 2024MAX Phase Ti<sub>2</sub>AlN for HfO<sub>2</sub> Memristors with Ultra‐Low Reset Current Density and Large On/Off Ratio5citations
  • 2024Multi-Objective Optimization of Friction Stir Processing Tool with Composite Material Parameterscitations
  • 2023Photochemically Induced Marangoni Patterning of Polymer Bilayerscitations
  • 2023Wear performance analysis of B<sub>4</sub>C and graphene particles reinforced Al–Cu alloy based composites using Taguchi method2citations
  • 2023Evolution of flow reversal and flow heterogeneities in high elasticity wormlike micelles (WLMs) with a yield stress5citations
  • 2022SURFACE EROSION PERFORMANCE OF YTTRIUM OXIDE BLENDED WC-12CO THERMALLY SPRAYED COATING FOR MILD STEEL2citations
  • 2022Controlling Surface Deformation and Feature Aspect Ratio in Photochemically Induced Marangoni Patterning of Polymer Films4citations
  • 2021Criteria Governing Rod Formation and Growth in Nonionic Polymer Micelles14citations
  • 2021Achieving Stable Patterns in Multicomponent Polymer Thin Films Using Marangoni and van der Waals Forces5citations
  • 2021Study on Solid Particle Erosion of Pump Materials by Fly Ash Slurry using Taguchi’s Orthogonal Array27citations
  • 2020Self-aligned capillarity-assisted printing of high aspect ratio flexible metal conductors10citations
  • 2019Dynamic wetting failure in curtain coating15citations
  • 2017Droplet wetting transitions on inclined substrates in the presence of external shear and substrate permeability21citations
  • 2016Dynamic wetting failure and hydrodynamic assist in curtain coating24citations
  • 2015Combined thermal and electrohydrodynamic patterning of thin liquid films16citations
  • 2011Highly conducting and flexible few-walled carbon nanotube thin film50citations
  • 2010Meltblown fibers130citations
  • 2010Transient growth without inertia70citations
  • 2010Transient response of velocity fluctuations in inertialess channel flows of viscoelastic fluidscitations
  • 2004Instability of viscoelastic plane Couette flow past a deformable wall37citations
  • 2000Shear banding and secondary flow in viscoelastic fluids between a cone and plate18citations

Places of action

Chart of shared publication
Graham, Samuel
1 / 6 shared
Tian, Mengkun
1 / 6 shared
Vogel, Eric
1 / 1 shared
Datta, Suman
1 / 1 shared
Athena, Fabia Farlin
1 / 1 shared
Aabrar, Khandker Akif
1 / 1 shared
Buchmaier, Wolfgang
1 / 1 shared
Nnaji, Moses
1 / 1 shared
Vaca, Diego
1 / 1 shared
Bongale, Arunkumar
2 / 5 shared
Nargundkar, Aniket
1 / 1 shared
Usgaonkar, Saurabh Shenvi
3 / 4 shared
Sachit, T. S.
1 / 1 shared
Jadhav, Priya
1 / 2 shared
Porcar, Lionel
1 / 29 shared
Mccauley, Patrick J.
2 / 2 shared
Huang, Christine
1 / 1 shared
Kumar, Prashant
1 / 13 shared
Singh, Varinder
1 / 2 shared
Singh, Jashanpreet
1 / 2 shared
Mohapatra, S. K.
1 / 1 shared
Jochem, Krystopher S.
1 / 1 shared
Bidoky, Fazel Zare
1 / 1 shared
Wang, Yan
1 / 10 shared
Kolliopoulos, Panayiotis
1 / 1 shared
Frisbie, C. Daniel
1 / 10 shared
Francis, Lorraine F.
1 / 8 shared
Carvalho, Marcio S.
2 / 2 shared
Liu, Chen Yu
2 / 2 shared
Espín, Leonardo
1 / 1 shared
Vandre, Eric
1 / 1 shared
Corbett, Andrew
1 / 1 shared
Sohn, Gyung Joo
1 / 1 shared
Baek, Jong Beom
1 / 2 shared
Jain, Rahul
1 / 4 shared
Jeon, In Yup
1 / 1 shared
Macosko, Christopher W.
1 / 13 shared
Zhou, Chunfeng
1 / 1 shared
Tan, Dawud H.
1 / 2 shared
Bates, Frank S.
1 / 90 shared
Jovanović, Mihailo R.
2 / 2 shared
Shankar, V.
1 / 1 shared
Larson, Ronald G.
1 / 4 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2017
2016
2015
2011
2010
2004
2000

Co-Authors (by relevance)

  • Graham, Samuel
  • Tian, Mengkun
  • Vogel, Eric
  • Datta, Suman
  • Athena, Fabia Farlin
  • Aabrar, Khandker Akif
  • Buchmaier, Wolfgang
  • Nnaji, Moses
  • Vaca, Diego
  • Bongale, Arunkumar
  • Nargundkar, Aniket
  • Usgaonkar, Saurabh Shenvi
  • Sachit, T. S.
  • Jadhav, Priya
  • Porcar, Lionel
  • Mccauley, Patrick J.
  • Huang, Christine
  • Kumar, Prashant
  • Singh, Varinder
  • Singh, Jashanpreet
  • Mohapatra, S. K.
  • Jochem, Krystopher S.
  • Bidoky, Fazel Zare
  • Wang, Yan
  • Kolliopoulos, Panayiotis
  • Frisbie, C. Daniel
  • Francis, Lorraine F.
  • Carvalho, Marcio S.
  • Liu, Chen Yu
  • Espín, Leonardo
  • Vandre, Eric
  • Corbett, Andrew
  • Sohn, Gyung Joo
  • Baek, Jong Beom
  • Jain, Rahul
  • Jeon, In Yup
  • Macosko, Christopher W.
  • Zhou, Chunfeng
  • Tan, Dawud H.
  • Bates, Frank S.
  • Jovanović, Mihailo R.
  • Shankar, V.
  • Larson, Ronald G.
OrganizationsLocationPeople

article

Instability of viscoelastic plane Couette flow past a deformable wall

  • Kumar, Satish
  • Shankar, V.
Abstract

<p>The stability of plane Couette flow of an upper-convected Maxwell (UCM) fluid of thickness R, viscosity η and relaxation time τ<sub>R</sub> past a deformable wall (modeled here as a linear viscoelastic solid fixed to a rigid plate) of thickness HR, shear modulus G and viscosity η<sub>w</sub> is determined using a temporal linear stability analysis in the creeping-flow regime where the inertia of the fluid and the wall is negligible. The effect of wall elasticity on the stable modes of Gorodtsov and Leonov [J. Appl. Math. Mech. 31 (1967) 310] for Couette flow of a UCM fluid past a rigid wall, and the effect of fluid elasticity on the unstable modes of Kumaran et al. [J. Phys. II (Fr.) 4 (1994) 893] for Couette flow of a Newtonian fluid past a deformable wall are analyzed. Results of our analysis show that there is only one unstable mode at finite values of the Weissenberg number, W=τ<sub>R</sub>V/R (where V is the velocity of the top plate) and nondimensional wall elasticity, Γ=Vη/(GR). In the rigid wall limit, Γ≪1 and at finite W this mode becomes stable and reduces to the stable mode of Gorodtsov and Leonov. In the Newtonian fluid limit, W→0 and at finite Γ this mode reduces to the unstable mode of Kumaran et al. The variation of the critical velocity, Γ<sub>c</sub>, required for this instability as a function of W̄=τ<sub>R</sub>G/η (a modified Weissenberg number) shows that the instability exists in a finite region in the Γ <sub>c</sub>-W̄ plane when Γ<sub>c</sub>&gt;Γ <sub>c,Newt</sub> and W̄&lt;W̄<sub>max</sub>, where Γ<sub>c,Newt</sub> is the value of the critical velocity for a Newtonian fluid. The variation of Γ<sub>c</sub> with W̄ for various values of H are shown to collapse onto a single master curve when plotted as Γ<sub>c</sub>H versus W̄/H, for H≫1. The effect of wall viscosity is analyzed and is shown to have a stabilizing effect.</p>

Topics
  • impedance spectroscopy
  • viscosity
  • elasticity