People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Akinwamide, Samuel Olukayode
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Structural integrity and hybrid ANFIS-PSO modeling of the corrosion rate of ductile irons in different environmentscitations
- 2024Characterization of friction stir-based linear continuous joining of aluminium alloy to structural polymercitations
- 2024Densification and corrosion properties of graphite reinforced binderless TiC70N30 ceramic compositescitations
- 2024Tribological properties of graphitized TiC0.5N0.5 based composites using response surface methodologycitations
- 2023Microstructure and biocorrosion studies of spark plasma sintered yttria stabilized zirconia reinforced Ti6Al7Nb alloy in Hanks' solutioncitations
- 2023Nanoindentation and Corrosion Behaviour of 410 Stainless Steel Fabricated Via Additive Manufacturingcitations
- 2023Synthesis and characterization of spark plasma sintered zirconia and ferrotitanium reinforced hybrid aluminium compositecitations
- 2023Synthesis and characterization of spark plasma sintered zirconia and ferrotitanium reinforced hybrid aluminium compositecitations
- 2023Characterization of pulse electric current sintered Ti-6Al-4V ternary composites : Role of YSZ-Si3N4 ceramics addition on structural modification and hydrogen desorptioncitations
- 2023The Effect of TiN-TiB2 on the Microstructure, Wear, and Nanoindentation Behavior of Ti6Al4V-Ni-Cr Matrix Compositescitations
- 2022A Review on Heat Treatment of Cast Iron: Phase Evolution and Mechanical Characterizationcitations
- 2022Insight into tribological and corrosion behaviour of binderless TiCxNy ceramic composites processed via pulsed electric current sintering techniquecitations
- 2022A review on optical properties and application of transparent ceramicscitations
- 2022Alloying effect of copper in AA-7075 aluminum composite using bale out furnacecitations
- 2019A Nanoindentation Study on Al (TiFe-Mg-SiC) Composites Fabricated via Stir Castingcitations
Places of action
Organizations | Location | People |
---|
document
A review on optical properties and application of transparent ceramics
Abstract
Advanced expertise and technologies have been devoted to producing high functional materials with a polycrystalline nature, which is transparent to visible light for various manufacturing applications. Materials with a good lattice structure can also be adopted in the manufacturing of transparent ceramics. Observations from the literature showed that oxide-based transparent ceramics had been successfully utilized, owing to their remarkable mechanical properties, chemical stability, and a wide range of flexible synthesis routes. Translucent zirconia (ZrO2) ceramics have drawn enormous attention from researchers in different fields due to their outstanding properties such as oxygen (O2) conductivity, mechanical behavior, functional properties, high level of toughness, and thermal conductivity. The Cubic and tetragonal crystal structure of zirconia can be applied for stabilizing Yttria (Y2O3) to enhance its optical performance and mechanical strength. Due to high chemical stability and high refractive index within the range of 2.2, transparent yttria-stabilized zirconia ceramic has been found useable in varying applications, including electromagnetic radiation, and camera lenses. The purity of starting materials and sintering techniques has been considered the proper production process for obtaining fully dense ceramics with less than 0.01% residual porosity for optical transparency. Scientists compared both conventional and modern processing techniques for transparent ceramic materials, the findings shows that modern processing techniques were better in morphological/mechanical properties. Consequently, the major drawbacks experienced during the consolidation processes can be attributed to the chemical impurity of sintering methods, the ceramic or the processing flexibility of the ceramic, sintering aids employed, and microstructural characteristics (e.g., porosity). In this review, an effort was made to summarize the advancement of transparent YSZ ceramics, focusing on applications and various consolidation ...