Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Beillas, Philippe

  • Google
  • 4
  • 10
  • 87

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2016Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities50citations
  • 2015Effects of pressure on the shear modulus, mass and thickness of the perfused porcine kidney17citations
  • 2013Effects of storage temperature on the mechanical properties of porcine kidney estimated using Shear Wave Elastography20citations
  • 2012Repeatability of a protocol to evaluate the effect of storage on the mechanical properties of the kidney in-vitrocitations

Places of action

Chart of shared publication
Mitton, David
1 / 9 shared
Voirin, David
1 / 1 shared
Turquier, Frédéric
1 / 1 shared
Tran, Doris
1 / 1 shared
Podwojewski, Florence
1 / 1 shared
Ottenio, Mélanie
1 / 1 shared
Tanter, Mickaël
3 / 9 shared
Helfenstein, Clémentine
1 / 1 shared
Gennisson, Jean-Luc
3 / 17 shared
Ternifi, Redouane
2 / 2 shared
Chart of publication period
2016
2015
2013
2012

Co-Authors (by relevance)

  • Mitton, David
  • Voirin, David
  • Turquier, Frédéric
  • Tran, Doris
  • Podwojewski, Florence
  • Ottenio, Mélanie
  • Tanter, Mickaël
  • Helfenstein, Clémentine
  • Gennisson, Jean-Luc
  • Ternifi, Redouane
OrganizationsLocationPeople

article

Effects of storage temperature on the mechanical properties of porcine kidney estimated using Shear Wave Elastography

  • Beillas, Philippe
  • Tanter, Mickaël
  • Gennisson, Jean-Luc
  • Ternifi, Redouane
Abstract

The objective of this study was to evaluate the effects of different conservation techniques on the mechanical properties of the ex vivo porcine kidney in order to select an appropriate conservation protocol to use prior to mechanical testing. Five groups of 8 kidneys each were subjected to different methods of conservation: storage at 4°C, -18°C, -34°C and -71°C, for 7 days, or storage at 20°C for 2 days only (as the tissues degraded quickly). Their shear modulus as a function of depth in the organ was evaluated before (fresh) and after conservation using shear wave elastography. Results obtained on fresh kidneys were collected within 6 hours of death. Freezing lead to a significant decrease (p<0.05) of the shear modulus in the most superficial zone (renal cortex), irrespectively of the freezing temperature (-18°C, -34°C, -71°C). There were no significant change (p>0.05) in the properties of the renal cortex when stored at 4°C or 20°C. The average moduli in the central region of the kidney (medulla) were much higher than in the cortex and exhibited also exhibited larger specimen to specimen variations. The effects of the conservation method on the central region were not significant. Overall, the results suggest that kidney tissues should not be frozen prior to biomechanical characterization and that inhomogeneity may be important to consider for in biomechanical models.

Topics