People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Klein, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Investigation of complex single-walled intersecting structures fabricated by wire-arc directed energy depositioncitations
- 2024Residual Stresses in a Wire and Arc-Directed Energy-Deposited Al–6Cu–Mn (ER2319) Alloy Determined by Energy-Dispersive High-Energy X-ray Diffractioncitations
- 2024Demonstration of the Fabrication of a Large-Scale Aluminum Structure by Wire-Arc Directed Energy Deposition Using a Novel Aluminum Alloycitations
- 2024Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
- 2024Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
- 2024Physical Simulation of microstructures generated by wire-arc directed energy deposition
- 2023Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn (AZ91) alloycitations
- 2023Wire arc additive manufacturing of light metals: From experimental investigation to numerical process simulation and microstructural modelingcitations
- 2023Effects on Microstructure and Mechanical Properties of the Addition of Co, Cr, and Fe to the Eutectoid System Ti-6.5Cu
- 2023Effects of Fe and Al additions on the eutectoid transformation and its transformation products in Ti-5.9(wt.%)Cu
- 2023High-temperature microstructure evolution of an advanced intermetallic nano-lamellar γ-TiAl-based alloy and associated diffusion processescitations
- 2023High-temperature microstructure evolution of an advanced intermetallic nano-lamellar γ-TiAl-based alloy and associated diffusion processescitations
- 2023Titanium MMCs With Enhanced Specific Young’s Modulus via Powder Hot Extrusion
- 2023Microstructure and Mechanical Properties of an Advanced Ag-Microalloyed Aluminum Crossover Alloy Tailored for Wire-Arc Directed Energy Depositioncitations
- 2022Quench rate sensitivity of age-hardenable Al-Zn-Mg-Cu alloys with respect to the Zn/Mg ratio: An in situ SAXS and HEXRD studycitations
- 2022Characterisation of structural modifications on cold-formed AA2024 substrates by wire arc additive manufacturingcitations
- 2022Quench rate sensitivity of age-hardenable Al-Zn-Mg-Cu alloys with respect to the Zn/Mg ratiocitations
- 2022Drahtbasierte additive Fertigung der Luftfahrtlegierung AA2024
- 2021Microstructure evolution induced by the intrinsic heat treatment occurring during wire-arc additive manufacturing of an Al-Mg-Zn-Cu crossover alloycitations
- 2020High-temperature phenomena in an advanced intermetallic nano-lamellar γ-TiAl-based alloy. Part Icitations
- 2020An Advanced TiAl Alloy for High-Performance Racing Applicationscitations
- 2019The creep behavior of a fully lamellar γ-TiAl based alloycitations
- 2019In situ and atomic-scale investigations of the early stages of γ precipitate growth in a supersaturated intermetallic Ti-44Al-7Mo (at.%) solid solutioncitations
- 2019Formation of "carbide-free zones" resulting from the interplay of C redistribution and carbide precipitation during bainitic transformationcitations
- 2018Intermetallicscitations
- 2016Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomographycitations
- 2015Carbon distribution in multi-phase γ-TiAl based alloys and its influence on mechanical properties and phase formationcitations
- 2014Distribution of alloying elements within the constituent phases of a C-containing gamma-TiAl based alloy studied by atom probe tomographycitations
Places of action
Organizations | Location | People |
---|
article
Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn (AZ91) alloy
Abstract
In recent years, wire-arc directed energy deposition (waDED), which is also commonly known as wire-arc additive manufacturing (WAAM), has emerged as a promising new fabrication technique for magnesium alloys. The major reason for this is the possibility of producing parts with a complex geometry as well as a fine-grained microstructure. While the process has been shown to be applicable for Mg-Al-Zn alloys, there is still a lack of knowledge in terms of the influence of the WAAM process on the age-hardening response. Consequently, this study deals with the aging response of a WAAM AZ91 alloy. In order to fully understand the mechanisms during aging, first, the as-built condition was analyzed by means of high-energy X-ray diffraction (HEXRD) and scanning electron microscopy. These investigations revealed a fine-grained, equiaxed microstructure with adjacent areas of alternating Al content. Subsequently, the difference between single- and double-step aging as well as conventional and direct aging was studied on the as-built WAAM AZ91 alloy for the first time. The aging response during the various heat treatments was monitored via in situ HEXRD experiments. Corroborating electron microscopy and hardness studies were conducted. The results showed that the application of a double-step aging heat treatment at 325 °C with pre-aging at 250 °C slightly improves the mechanical properties when compared to the single-step heat treatment at 325 °C. However, the hardness decreases considerably after the pre-aging step. Thus, aging at lower temperatures is preferable within the investigated temperature range of 250-325 °C. Moreover, no significant difference between the conventionally aged and directly aged samples was found. Lastly, the specimens showed enhanced precipitation kinetics during aging as compared to cast samples. This could be attributed to a higher amount of nucleation sites and the particular temperature profile of the solution heat treatment.