People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vellaisamy, Arul Lenus Roy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 20242D MXene Interface Engineered Bismuth Telluride Thermoelectric Module with Improved Efficiency for Waste Heat Recoverycitations
- 2023Facile composite engineering to boost thermoelectric power conversion in ZnSb devicecitations
- 20233D Architectural MXene‐based Composite Films for Stealth Terahertz Electromagnetic Interference Shielding Performancecitations
- 2023Dispersion of InSb Nanoinclusions in Cu<sub>3</sub>SbS<sub>4</sub> for Improved Stability and Thermoelectric Efficiencycitations
- 2023Eco-Friendly Cerium–Cobalt Counter-Doped Bi2Se3 Nanoparticulate Semiconductorcitations
- 2022Hierarchically Interlaced 2D Copper Iodide/MXene Composite for High Thermoelectric Performancecitations
- 2022Amorphous carbon nano-inclusions for strategical enhancement of thermoelectric performance in Earth-abundant Cu3SbS4citations
- 2022Probing the Effect of MWCNT Nanoinclusions on the Thermoelectric Performance of Cu3SbS4 Compositescitations
- 2022Thermoelectric properties of sulfide and selenide-based materialscitations
- 2022Insights into the Classification of Nanoinclusions of Composites for Thermoelectric Applicationscitations
- 2021Ultralow Thermal Conductivity in Dual-Doped n-Type Bi2Te3 Material for Enhanced Thermoelectric Propertiescitations
- 2021Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaicscitations
- 2021Effective decoupling of seebeck coefficient and the electrical conductivity through isovalent substitution of erbium in bismuth selenide thermoelectric materialcitations
- 2019Simultaneous Enhancement of Thermopower and Electrical Conductivity through Isovalent Substitution of Cerium in Bismuth Selenide Thermoelectric Materialscitations
- 2019Efficient oxygen electroreduction kinetics by titanium carbide@nitrogen doped carbon nanocompositecitations
- 2019Influence of nitrogen dopant source on the structural, photoluminescence and electrical properties of ZnO thin films deposited by pulsed spray pyrolysiscitations
- 2007Nanocomposite field effect transistors based on zinc oxide/polymer blendscitations
- 2004Influence of the substrate temperature to the performance of tris (8-hydroxyquinoline) aluminum based organic light emitting diodescitations
Places of action
Organizations | Location | People |
---|
article
Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaics
Abstract
Perovskite-based photovoltaic materials have been attracting attention for their strikingly improved performance at converting sunlight into electricity. The beneficial and unique optoelectronic characteristics of perovskite structures enable researchers to achieve an incredibly remarkable power conversion efficiency. Flexible hybrid perovskite photovoltaics promise emerging applications in a myriad of optoelectronic and wearable/portable device applications owing to their inherent intriguing physicochemical and photophysical properties which enabled researchers to take forward advanced research in this growing field. Flexible perovskite photovoltaics have attracted significant attention owing to their fascinating material properties with combined merits of high efficiency, light-weight, flexibility, semi-transparency, compatibility towards roll-to-roll printing, and large-area mass-scale production. Flexible perovskite-based solar cells comprise of 4 key components that include a flexible substrate, semi-transparent bottom contact electrode, perovskite (light absorber layer) and charge transport (electron/hole) layers and top (usually metal) electrode. Among these components, interfacial layers and contact electrodes play a pivotal role in influencing the overall photovoltaic performance. In this comprehensive review article, we focus on the current developments and latest progress achieved in perovskite photovoltaics concerning the charge selective transport layers/electrodes toward the fabrication of highly stable, efficient flexible devices. As a concluding remark, we briefly summarize the highlights of the review article and make recommendations for future outlook and investigation with perspectives on the perovskite-based optoelectronic functional devices that can be potentially utilized in smart wearable and portable devices.