People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Theofanous, Marios
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023A triaxiality‐dependent fracture model for hot‐rolled sections made of S355 steel
- 2023Comparative study on fracture characteristics of carbon and stainless steel bolt materialcitations
- 2022Numerical modelling of stainless steel bolted T-stubs in tensioncitations
- 2022Numerical simulation and design of ferritic stainless steel bolted T-stubs in tensioncitations
- 2021Design of stainless steel cross-sections with outstand elements under stress gradientscitations
- 2021Structural response of cold-formed lipped Z purlins ��� Part 2 numerical modelling and optimisation of lip sizecitations
- 2021Structural response of cold-formed lipped Z purlins – Part 2 numerical modelling and optimisation of lip sizecitations
- 2021Experimental study of ferritic stainless steel bolted T-stubs under monotonic loadingcitations
- 2021Effect of transverse and longitudinal reinforcement ratios on the behaviour of RC T-beams shear-strengthened with embedded FRP barscitations
- 2019Elevated temperature performance of restrained stainless steel beamscitations
- 2019Structural behaviour of stainless steel beam-to-tubular column jointscitations
- 2019Plastic design of stainless steel continuous beamscitations
- 2019Numerical simulation and analysis of axially restrained stainless steel beams in fire
- 2019Effect of existing steel-to-embedded FRP shear reinforcement ratio on the behaviour of reinforced concrete T-beams
- 2018Behaviour of stainless steel beam-to-column joints-Part 2:citations
- 2018Experimental behavior and design of reinforced concrete exterior beam-column joints strengthened with embedded barscitations
- 2018Behaviour of stainless steel beam-to-column joints - Part 1: Experimental investigationcitations
- 2018Design of reinforced concrete T-beams strengthened in shear with externally bonded FRP composites
- 2017Material properties and compressive local buckling response of high strength steel square and rectangular hollow sectionscitations
- 2016The continuous strength method for steel cross-section design at elevated temperaturescitations
- 2016Laser-welded stainless steel I-sections: residual stress measurements and column buckling testscitations
- 2016Flexural behaviour of hot-finished high strength steel square and rectangular hollow sectionscitations
- 2015Experimental study of stainless steel angles and channels in bendingcitations
- 2012Ultimate capacity of stainless steel RHS subjected to combined compression and bending
Places of action
Organizations | Location | People |
---|
article
Behaviour of stainless steel beam-to-column joints-Part 2:
Abstract
This paper reports a detailed numerical (FE) study on planar stainless steel beam-to-column joints. A nonlinear FE model is developed and validated against the first set on full-scale tests on stainless steel beam-to-column joints reported in the companion paper. The FE model is shown to accurately replicate the experimentally determined, initial stiffness, ultimate resistance, overall moment-rotation response and observed failure modes. Parametric studies are conducted to obtain the moment-rotation characteristics of a wide range of beam-to-column joints classified as semi-rigid and/or partial strength. Due to the low ductility of the bolts compared to the high ductility exhibited by all other stainless steel joint components, in all cases the strength and ductility of the simulated joints is limited by the failure of the connecting bolts. The design rules for stainless steel connections, which are based on the specifications of EN 1993-1-8 for carbon steel joints, are reviewed and are found to be overly conservative in terms of strength and inaccurate in terms of stiffness thus necessitating the development of novel design guidance in line with the observed structural response. These conclusions are in agreement with the ones reported in the companion paper.