People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Machado, Bf
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2015Platinum on carbonaceous supports for glycerol hydrogenolysis: Support effectcitations
- 2014Understanding the surface chemistry of carbon nanotubes: Toward a rational design of Ru nanocatalystscitations
- 2013Synergistic effect between few layer graphene and carbon nanotube supports for palladium catalyzing electrochemical oxidation of alcoholscitations
- 2012Preparation of carbon aerogel supported platinum catalysts for the selective hydrogenation of cinnamaldehydecitations
Places of action
Organizations | Location | People |
---|
article
Understanding the surface chemistry of carbon nanotubes: Toward a rational design of Ru nanocatalysts
Abstract
A comprehensive experimental and theoretical study of the surface chemistry of ruthenium nanoparticles supported on/in multi-walled carbon nanotubes (CNTs) is reported that could pave the way to the rational design of metal-carbon nanocomposites. It is shown that the oxidation of CNTs by nitric acid that creates various oxygen surface functional groups (SFGs) on the CNT external surface is a crucial step for metal grafting. In particular, it is demonstrated that carboxylic acid, carboxylic anhydride, and lactone groups act as anchoring centers for the Ru precursor, presumably as surface acetato ligands. The HNO3 treatment that also allows CNT opening contributes to the endohedral Ru deposition. The stability of Ru nanoparticles, modeled by a Ru13 cluster, on different adsorption sites follows the order: Gr-DV-(COOH)2 > Gr-DV > Gr (where DV is a double vacancy and Gr the graphene surface). It is evidenced that, after a high-temperature treatment performed in order to remove the SFGs, the Ru/CNT material can react with oxygen from air via a surface reconstruction reaction, which reforms a stable Ru-acetato interface. The mechanism of this reaction has been investigated by DFT. These Ru/CNT catalysts are extremely stable, keeping a mean particle size <2 nm, even after heating at 973 K under a hydrogen atmosphere.