People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rasul, Shahid
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Shaping sustainable pathwayscitations
- 2024Enhancing lithium-ion battery anode performance via heterogeneous nucleation of silver within Ti3C2-MXene frameworkscitations
- 2024Innovative Tin and hard carbon architecture for enhanced stability in lithium-ion battery anodescitations
- 2024Sputtered Hard Carbon for High-Performance Energy Storage Batteries
- 2024Designing Molybdenum Trioxide and Hard Carbon Architecture for Stable Lithium‐Ion Battery Anodescitations
- 2023Multi-layered Sn and Hard Carbon Architectures for Long-Term Stability and High-Capacity Lithium-Ion Battery Anodes
- 2023Fabrication of WO3 / Fe 2 O 3 heterostructure photoanode by PVD for photoelectrochemical applicationscitations
- 2023Advancing Lithium-Ion Battery Anodes: Novel Sn and Hard Carbon Architectures for Long-Term Stability and High Capacity
- 2023Molybdenum Incorporated O3‐type Sodium Layered Oxide Cathodes for High‐Performance Sodium‐Ion Batteriescitations
- 2022Coal fly ash supported CoFe2O4 nanocompositescitations
- 2021Enhancement of mechanical and corrosion resistance properties of electrodeposited Ni–P–TiC composite coatingscitations
- 2021In Situ Printing and Functionalization of Hybrid Polymer-Ceramic Composites Using a Commercial 3D Printer and Dielectrophoresis—A Novel Conceptual Designcitations
- 2021In situ printing and functionalization of hybrid polymer-ceramic composites using a commercial 3d printer and dielectrophoresis—a novel conceptual designcitations
- 2016Characterization of a porous carbon material functionalized with cobalt-oxide/cobalt core-shell nanoparticles for lithium ion battery electrodes
- 2016A simple UV-ozone surface treatment to enhance photocatalytic performance of TiO 2 loaded polymer nanofiber membranescitations
- 2014Photoelectrochemical and electrocatalytic properties of thermally oxidized copper oxide for efficient solar fuel productioncitations
- 2012High capacity positive electrodes for secondary Mg-ion batteriescitations
- 2012Synthesis and electrochemical behavior of hollandite MnO2/acetylene black composite cathode for secondary Mg-ion batteriescitations
Places of action
Organizations | Location | People |
---|
article
Enhancing lithium-ion battery anode performance via heterogeneous nucleation of silver within Ti3C2-MXene frameworks
Abstract
<p>Silver (Ag) nanoparticles are strategically integrated with 2D MXene material to engineer a high-capacity anode material suitable for lithium-ion batteries (LIBs). MXenes, renowned for their exceptional structural, mechanical, and chemical attributes, have emerged as promising candidates for advanced LIB electrode materials. However, the inherently narrow interlayer spacing within MXene poses challenges for efficient loading or modification with metal oxide nanoparticles, necessitating intricate and time-consuming processes. In this study, exfoliated MXene layers are subjected to an in-situ decoration process with Ag nanoparticles to augment interlayer spacing and enhance MXene conductivity. This augmentation is achieved through a direct reduction approach followed by a meticulously controlled two-step heat treatment process. Characterization analyses of the synthesized Ag-MXene nanoparticles unveil a uniform and homogeneous dispersion of nanoparticles, each measuring <50 nm. X-ray diffraction (XRD) confirms successful MXene formation from the MAX phase, accompanied by pure Ag nanoparticles affixed onto Ti<sub>3</sub>C<sub>2</sub> layers, as evidenced by sharp peaks indicative of crystalline structure. Fourier-transform infrared spectroscopy (FTIR) further confirms the low amount of terminal functional groups (-OH and -F) on the MXene layers. Thermal gravimetric analysis (TGA) highlights an enhancement in the thermal stability of Ti<sub>3</sub>C<sub>2</sub> upon Ag incorporation. Electrochemical performance evaluations demonstrate the exceptional cyclic stability of the Ag-Ti<sub>3</sub>C<sub>2</sub> nanocomposite, showcasing a highly reversible potential of approximately 544 mAhg<sup>−1</sup> after 100 cycles at a current rate of 0.1 C. Moreover, the rate capability is substantially improved, reaching up to 193 mAhg<sup>−1</sup> at 10 C, a significant enhancement compared to the mere 20 mAhg<sup>−1</sup> exhibited by pristine Ti<sub>3</sub>C<sub>2</sub>. Notably, the performance of Ag-Ti<sub>3</sub>C<sub>2</sub> as an anode material surpasses that of pristine Ti<sub>3</sub>C<sub>2</sub> across all evaluated metrics, attributed to the enhanced electrochemical kinetics facilitated by Ag's high electronic conductivity. These superior properties, stemming from the tailored material's unique morphology, effectively mitigate MXene layer restacking, rendering it highly advantageous for next-generation LIBs.</p>