Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kwofie, Samuel

  • Google
  • 3
  • 14
  • 90

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation – a critical review26citations
  • 2021Effective decoupling of seebeck coefficient and the electrical conductivity through isovalent substitution of erbium in bismuth selenide thermoelectric material32citations
  • 2021Effective decoupling of seebeck coefficient and the electrical conductivity through isovalent substitution of erbium in bismuth selenide thermoelectric material32citations

Places of action

Chart of shared publication
Ilyas, A. M.
2 / 2 shared
Musah, Jamal-Deen
3 / 7 shared
Solomon, Mensah
1 / 1 shared
Venkatesh, Shishir
1 / 1 shared
Wu, Chi-Man Lawrence
1 / 1 shared
Roy, Vellaisamy A. L.
2 / 10 shared
Novitskii, Andrei
2 / 4 shared
Egbo, Kingsley O.
1 / 1 shared
Serhiienko, Illia
2 / 7 shared
Yu, Kin Man
1 / 4 shared
Saianand, Gopalan
2 / 7 shared
Khovaylo, Vladimir
2 / 6 shared
Vellaisamy, Arul Lenus Roy
1 / 18 shared
Ilyas, Abdul-Mojeed Olabisi
1 / 2 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Ilyas, A. M.
  • Musah, Jamal-Deen
  • Solomon, Mensah
  • Venkatesh, Shishir
  • Wu, Chi-Man Lawrence
  • Roy, Vellaisamy A. L.
  • Novitskii, Andrei
  • Egbo, Kingsley O.
  • Serhiienko, Illia
  • Yu, Kin Man
  • Saianand, Gopalan
  • Khovaylo, Vladimir
  • Vellaisamy, Arul Lenus Roy
  • Ilyas, Abdul-Mojeed Olabisi
OrganizationsLocationPeople

article

Effective decoupling of seebeck coefficient and the electrical conductivity through isovalent substitution of erbium in bismuth selenide thermoelectric material

  • Novitskii, Andrei
  • Kwofie, Samuel
  • Musah, Jamal-Deen
  • Vellaisamy, Arul Lenus Roy
  • Ilyas, Abdul-Mojeed Olabisi
  • Serhiienko, Illia
  • Saianand, Gopalan
  • Khovaylo, Vladimir
Abstract

Recognizing high thermoelectric performance in semiconducting materials is a challenging task. This is because the Seebeck coefficient and electrical conductivity which constitute the thermoelectric power factor are unfavourably coupled. This means decoupling the transport properties of thermoelectric materials to enhance the power factor without compromising the thermal conductivity is essential. Herein we report that the substitution of erbium (Er) within bismuth selenide (Bi<sub>2</sub>Se<sub>3</sub>) results in a simultaneous enhancement in Seebeck coefficient and electrical conductivity via effective mass and Fermi energy optimization. The Er-Substitution in Bi<sub>2</sub>Se<sub>3</sub> does not only promote a simultaneous increase in Seebeck coefficient and electrical conductivity but also decreases the thermal conductivity through an enhancement in phonon scattering. <br/>   Consequently, the optimum composition is found for the Bi<sub>1</sub><sub>·</sub><sub>85</sub>Er<sub>0</sub><sub>·</sub><sub>15</sub>Se<sub>3</sub> sample instigating that, minimal substitution amount is required to optimize the thermoelectric performance. Our numerical calculation also shows that Er substitution alters the Fermi energy of the Bi<sub>2</sub>Se<sub>3</sub> TE materials, thereby enhancing the effective mass. Through Raman and XPS characterization, we also elucidate that Er substitution does not change the chemical structure and chemical bonding of the pristine material appreciably. It thus leads to improvement in the Seebeck coefficient and electrical conductivity via effective mass optimization. This unique work presents a facile, scalable, cost-effective, and controllable synthesis of nanostructured Bi<sub>2</sub>Se<sub>3</sub> toward realizing high-performance thermoelectric devices.

Topics
  • impedance spectroscopy
  • x-ray photoelectron spectroscopy
  • thermal conductivity
  • electrical conductivity
  • Bismuth
  • Erbium