Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chroneos, A.

  • Google
  • 9
  • 54
  • 271

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2022DFT insights into the electronic structure, mechanical behaviour, lattice dynamics and defect processes in the first Sc-based MAX phase Sc2SnC36citations
  • 2022Theoretical investigation of nitrogen-vacancy defects in silicon9citations
  • 2022Core-shell carbon-polymer quantum dot passivation for near infrared perovskite light emitting diodes1citations
  • 2021A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cellscitations
  • 2021A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells.citations
  • 2020Elastic behaviour and radiation tolerance in Nb-based 211 MAX phases29citations
  • 2018Physical properties and defect processes of M3SnC2 (M = Ti, Zr, Hf) MAX phases65citations
  • 2017Mechanical behavior, bonding nature and defect processes of Mo2ScAlC276citations
  • 2013Vacancies and defect levels in III-V semiconductors55citations

Places of action

Chart of shared publication
H., Naqib S.
1 / 1 shared
G., Christopoulos S.-R.
2 / 2 shared
A., Hadi M.
1 / 1 shared
A., Islam A. K. M.
1 / 1 shared
S., Potsidi M.
1 / 1 shared
A., Londos C.
1 / 1 shared
V., Sarlis N.
1 / 1 shared
Kuganathan, N.
1 / 1 shared
C., Palilis L.
1 / 1 shared
Panagiotakis, S.
1 / 1 shared
Yannakopoulou, K.
1 / 1 shared
Skoulikidou, M.-C.
1 / 1 shared
Vasilopoulou, M.
1 / 5 shared
Soultati, A.
1 / 2 shared
Argitis, P.
1 / 1 shared
Landrou, G.
1 / 1 shared
Ladomenou, K.
1 / 1 shared
Armadorou, K.-K.
1 / 1 shared
M., Yusoff A. R. B.
1 / 1 shared
Fillipatos, P.-P.
1 / 1 shared
Verykios, A.
1 / 1 shared
Tountas, M.
1 / 2 shared
G., Coutsolelos A.
1 / 1 shared
Tarancãn Rubio, Albert
1 / 2 shared
Diercks, David
1 / 4 shared
Morata, Alex
1 / 16 shared
Santiso, Josã
1 / 17 shared
Driscoll, Judith
1 / 7 shared
Parfitt, D.
2 / 2 shared
Wang, X.
2 / 79 shared
Wang, Haiyan
1 / 15 shared
Baiutti, Federico
1 / 12 shared
Acosta, Matias
1 / 12 shared
Chiabrera, Francesco Maria
1 / 11 shared
Cavallaro, Andrea
1 / 29 shared
Tarancon, A.
1 / 12 shared
Macmanus-Driscoll, J.
1 / 2 shared
Diercks, D.
1 / 1 shared
Morata, A.
1 / 10 shared
Cavallaro, A.
1 / 11 shared
Santiso, J.
1 / 6 shared
Baiutti, F.
1 / 6 shared
Chiabrera, F.
1 / 2 shared
Wang, H.
1 / 52 shared
Acosta, M.
1 / 7 shared
Christopoulos, Stavros-Richard G.
3 / 11 shared
Hadi, M. A.
3 / 6 shared
Islam, A. K. M. A.
3 / 11 shared
Naqib, S. H.
3 / 9 shared
Fitzpatrick, M. E.
1 / 20 shared
Grimes, R. W.
1 / 8 shared
Schwingenschloegl, U.
1 / 1 shared
Tahini, H. A.
1 / 1 shared
Murphy, St
1 / 8 shared
Chart of publication period
2022
2021
2020
2018
2017
2013

Co-Authors (by relevance)

  • H., Naqib S.
  • G., Christopoulos S.-R.
  • A., Hadi M.
  • A., Islam A. K. M.
  • S., Potsidi M.
  • A., Londos C.
  • V., Sarlis N.
  • Kuganathan, N.
  • C., Palilis L.
  • Panagiotakis, S.
  • Yannakopoulou, K.
  • Skoulikidou, M.-C.
  • Vasilopoulou, M.
  • Soultati, A.
  • Argitis, P.
  • Landrou, G.
  • Ladomenou, K.
  • Armadorou, K.-K.
  • M., Yusoff A. R. B.
  • Fillipatos, P.-P.
  • Verykios, A.
  • Tountas, M.
  • G., Coutsolelos A.
  • Tarancãn Rubio, Albert
  • Diercks, David
  • Morata, Alex
  • Santiso, Josã
  • Driscoll, Judith
  • Parfitt, D.
  • Wang, X.
  • Wang, Haiyan
  • Baiutti, Federico
  • Acosta, Matias
  • Chiabrera, Francesco Maria
  • Cavallaro, Andrea
  • Tarancon, A.
  • Macmanus-Driscoll, J.
  • Diercks, D.
  • Morata, A.
  • Cavallaro, A.
  • Santiso, J.
  • Baiutti, F.
  • Chiabrera, F.
  • Wang, H.
  • Acosta, M.
  • Christopoulos, Stavros-Richard G.
  • Hadi, M. A.
  • Islam, A. K. M. A.
  • Naqib, S. H.
  • Fitzpatrick, M. E.
  • Grimes, R. W.
  • Schwingenschloegl, U.
  • Tahini, H. A.
  • Murphy, St
OrganizationsLocationPeople

article

Physical properties and defect processes of M3SnC2 (M = Ti, Zr, Hf) MAX phases

  • Christopoulos, Stavros-Richard G.
  • Hadi, M. A.
  • Chroneos, A.
  • Fitzpatrick, M. E.
  • Islam, A. K. M. A.
  • Naqib, S. H.
Abstract

<p>We have employed density functional theory calculations for determining intrinsic defect processes and structural, elastic, and electronic properties of recently synthesized Sn-containing 312 MAX phases M<sub>3</sub>SnC<sub>2</sub> (M = Ti, Zr, Hf) including Debye temperature, Mulliken populations, theoretical hardness, charge density, and Fermi surface. The calculated lattice parameters justify the reliability of the present investigation, as they agree with the experimental values. The lattice constant a increases as the M-element moves from Ti to Hf in the periodic table. The mechanical stability of these compounds is verified with the computed single crystal elastic constants. Hf-based Hf<sub>3</sub>SnC<sub>2</sub> is nearly isotropic elastically in view of the calculated parameters. The Debye temperatures decrease following the sequence of M-element: Ti → Zr → Hf. Zr<sub>3</sub>SnC<sub>2</sub> and Hf<sub>3</sub>SnC<sub>2</sub> should be better first coat thermal barrier coating (TBC) materials. The investigated band structures indicate that the electrical conduction increases as the M-element moves down from the top of the group in the periodic table. A gradual decrease in electronic density of states (DOS) at E<sub>F</sub> also follows the order of M-element in the periodic table. The covalency of M-C bonds is calculated to be increased as M-atoms moves from Ti to Hf via Zr. The rank of machinability for these compounds should be Zr<sub>3</sub>SnC<sub>2</sub> &gt; Hf<sub>3</sub>SnC<sub>2</sub> &gt; Ti<sub>3</sub>SnC<sub>2</sub>. The Fermi surface topologies of the three 312 MAX phases are almost similar and comparable with those of 211 MAX phase counterparts. Considering defect reaction energies, it can be concluded that Ti<sub>3</sub>SnC<sub>2</sub> is predicted to be the most radiation-tolerant among Sn-MAX phases considered.</p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • compound
  • single crystal
  • phase
  • theory
  • hardness
  • defect
  • density functional theory
  • isotropic
  • band structure
  • Sn-containing