People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Berzin, Françoise
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Investigating Degradation in Extrusion-Processed Bio-Based Composites Enhanced with Clay Nanofillerscitations
- 2023Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscalecitations
- 2023Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscalecitations
- 2021Electrical and mechanical properties of partially bio‐based PP/PBS blends nanocomposites elaborated by twin‐screw extrusioncitations
- 2020Influence of the polarity of the matrix on the breakage mechanisms of lignocellulosic fibers during twin-screw extrusioncitations
- 2020Influence of the polarity of the matrix on the breakage mechanisms of lignocellulosic fibers during twin-screw extrusioncitations
- 2020Use of Flow Modeling to Optimize the Twin-Screw Extrusion Process for the Preparation of Lignocellulosic Fiber-Based Compositescitations
- 2018Mechanical properties of leaf sheath date palm fibre waste biomass reinforced polycaprolactone (PCL) biocompositescitations
- 2018Processing and properties of pineapple leaf fibers-polypropylene composites prepared by twin-screw extrusioncitations
- 2018Processing and properties of pineapple leaf fibers-polypropylene composites prepared by twin-screw extrusioncitations
- 2017Lignocellulosic fiber breakage in a molten polymer. Part 3. Modeling of the dimensional change of the fibers during compounding by twin screw extrusioncitations
- 2016Reliability evaluation of automated analysis, 2D scanner, and micro-tomography methods for measuring fiber dimensions in polymer-lignocellulosic fiber compositescitations
- 2016Reliability evaluation of automated analysis, 2D scanner, and micro-tomography methods for measuring fiber dimensions in polymer-lignocellulosic fiber compositescitations
- 2014Microstructure, rheological behavior, and properties of poly(lactic acid)/poly(butylene succinate)/organoclay nanocompositescitations
- 2014Modelling of lignocellulosic fibre length evolution during composite compounding in twin screw extrusion
- 2012Thermo-hydric environment and specific mechanical energy impacts on defibration using flow modeling and twin screw extrusion
- 2010Importance of Coupling Between Specific Energy and Viscosity in the Modeling of Twin Screw Extrusion of Starchy Productscitations
- 2009Modelling Of Coupling Between Specific Energy And Viscosity During Twin Screw Extrusion Of Starchy Products
- 2004Modelling of flow and chemistry in twin screw extruderscitations
Places of action
Organizations | Location | People |
---|
article
Mechanical properties of leaf sheath date palm fibre waste biomass reinforced polycaprolactone (PCL) biocomposites
Abstract
Date palm fibres are one of the most available natural fibres in North Africa and the Middle East. A significant amount of date palm fibres biomass is wasted annually and only limited amounts are used in low value products. In this study, tensile and low-velocity impact responses of biodegradable, lignocellulosic biomass reinforced polycaprolactone (PCL) biocomposites are reported. Two different types of laminates reinforced with date palm fibre obtained from agriculture waste were manufactured using an extrusion process. The influence of processing parameters, such as screw rotation speed on the tensile and low-velocity impact damage characteristics have been investigated. The tensile strength increased for neat PCL from 19 MPa to 25 MPa with 28 wt.% reinforcement of date palm fibres. Similarly, the tensile modulus for neat PCL was increased from 140 MPa to 282 MPa upon reinforcement. The screw rotation speed showed a moderate effect on palm fibre morphologies, and slight effect on tensile properties of the biocomposites. Specimens with lower incident energy of 25 J achieved better impact resistance compared to that of 50 J. The impact damage of biocomposites analysed through scanning electron microscopy (SEM) on the fractured surfaces showed various modes of damage. The biocomposites developed in this work can be used as an economically and environmentally attractive alternative materials for lightweight applications in automotive and marine sectors.