Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wijnen, Job

  • Google
  • 2
  • 5
  • 29

Eindhoven University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024A quasi-2D integrated experimental–numerical approach to high-fidelity mechanical analysis of metallic microstructures9citations
  • 2021A discrete slip plane model for simulating heterogeneous plastic deformation in single crystals20citations

Places of action

Chart of shared publication
Geers, Mgd Marc
2 / 117 shared
Peerlings, R. H. J.
1 / 31 shared
Hoefnagels, Jpm Johan
2 / 71 shared
Vermeij, Tijmen
1 / 12 shared
Peerlings, Ron H. J.
1 / 5 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Geers, Mgd Marc
  • Peerlings, R. H. J.
  • Hoefnagels, Jpm Johan
  • Vermeij, Tijmen
  • Peerlings, Ron H. J.
OrganizationsLocationPeople

article

A discrete slip plane model for simulating heterogeneous plastic deformation in single crystals

  • Geers, Mgd Marc
  • Peerlings, Ron H. J.
  • Hoefnagels, Jpm Johan
  • Wijnen, Job
Abstract

In small-scale mechanical tests, such as micropillar compression tests, plastic deformation is often localized in narrow slip traces. These slip traces result from a few dislocation sources with relatively low nucleation stresses that are present in the material. In order to accurately simulate such small-scale experiments, the stochastics of the underlying dislocation network must be taken into account, which is usually done by performing discrete dislocation dynamics simulations. However, their high computational cost generally restricts these simulations to small and simple geometries and small applied displacements. Furthermore, effects of geometrical changes are usually neglected in the small strain formulation adopted. In this study, a discrete slip plane model for simulating small-scale experiments on single crystals is proposed, which takes the most important characteristics of dislocation plasticity for geometries in the micrometer range into account, i.e.\ the stochastics and physics of dislocation sources. In the model, the properties of all lattice planes are sampled from a probability density function. This results in a heterogeneous flow stress within a single crystal, unlike the uniform properties assumed in conventional crystal plasticity formulations. Moreover, the slip planes can be grouped together in bands via a weakest-link principle. The resulting equations are implemented in a standard crystal plasticity finite element model, using a finite deformation formulation. Within this setting, only the collective dislocation motion on glide planes is modeled, resulting in a significantly lower computational cost compared to frameworks in which the dynamics of individual dislocations are considered. This allows for simulating multiple realizations in 3D, up to large deformations. A small case study on micropillar compression tests is presented to illustrate the capabilities of the model.

Topics
  • density
  • impedance spectroscopy
  • polymer
  • single crystal
  • experiment
  • simulation
  • dislocation
  • compression test
  • plasticity
  • crystal plasticity
  • dislocation dynamics