People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zeman, Miro
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Stable passivation of cut edges in encapsulated n-type silicon solar cells using Nafion polymercitations
- 2022Introducing a comprehensive physics-based modelling framework for tandem and other PV systemscitations
- 2022Raman spectroscopy of silicon with nanostructured surfacecitations
- 2022Thermal Stable High-Efficiency Copper Screen Printed Back Contact Solar Cellscitations
- 2022Achieving 23.83% conversion efficiency in silicon heterojunction solar cell with ultra-thin MoOx hole collector layer via tailoring (i)a-Si:H/MoOx interfacecitations
- 2021Design and optimization of hole collectors based on nc-SiOx:H for high-efficiency silicon heterojunction solar cellscitations
- 2021On current collection from supporting layers in perovskite/c-Si tandem solar cellscitations
- 2020Copper-Plating Metallization With Alternative Seed Layers for c-Si Solar Cells Embedding Carrier-Selective Passivating Contactscitations
- 2020Realizing the Potential of RF-Sputtered Hydrogenated Fluorine-Doped Indium Oxide as an Electrode Material for Ultrathin SiO x/Poly-Si Passivating Contactscitations
- 2019High temperature oxidation pre-treatment of textured c-Si wafers passivated by a-Si:Hcitations
- 2019Effective Passivation of Black Silicon Surfaces via Plasma-Enhanced Chemical Vapor Deposition Grown Conformal Hydrogenated Amorphous Silicon Layercitations
- 2018Poly-crystalline silicon-oxide films as carrier-selective passivating contacts for c-Si solar cellscitations
- 2017Poly-Si(O)x passivating contacts for high-efficiency c-Si IBC solar cellscitations
- 2017Electron tomography analysis of 3D interfacial nanostructures appearing in annealed Si rich SiC filmscitations
- 2017New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopycitations
- 2017Design and comparison of a 10-kW interleaved boost converter for PV application using Si and SiC devicescitations
- 2016TEM analysis of multilayered nanostructures formed in the rapid thermal annealed silicon rich silicon oxide film
- 2014Study of the effect of boron doping on the solid phase crystallisation of hydrogenated amorphous silicon films
- 2014Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se-2 solar cellscitations
- 2009Structural properties of amorphous silicon prepared from hydrogen diluted silanecitations
- 2000Challenges in amorphous silicon solar cell technology
Places of action
Organizations | Location | People |
---|
article
Raman spectroscopy of silicon with nanostructured surface
Abstract
<p>We compared the morphology and Raman response of nanoscale shaped surfaces of Si substrates versus monocrystalline Si. Samples were structured by reactive ion etching, and four of them were covered by a RuO<sub>2</sub>-IrO<sub>2</sub> layer. Raman bands, centred at approx. 520 cm<sup>–1</sup>, belonging to samples processed by etching the Si surface have intensities higher by approximately one order of magnitude than those of reference non-etched samples. For nanostructured samples, the rise in the Raman signal was 12–14 ×, which is in agreement with the model of the electric field at the tips of Si due to their geometry. This phenomenon is related to the high absorption of excitation radiation. Nanostructured surfaces of samples containing a layer of RuO<sub>2</sub>-IrO<sub>2</sub> give rise to the phenomenon of surface enhancement of the Raman response most likely due to the charge transfer at the interface between silicon and conductive oxides. The nanostructured surface of Si without a metal layer behaves as a SERS substrate and detects the analytes at a low concentration.</p>