People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dam, Bernard
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Tuning the Properties of Thin-Film TaRu for Hydrogen-Sensing Applicationscitations
- 2020Metallurgical Synthesis of Mg2FexSi1- x Hydridecitations
- 2019Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detectioncitations
- 2019Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detectioncitations
- 2019Effect of the addition of zirconium on the photochromic properties of yttrium oxy-hydridecitations
- 2019Suppressing H 2 Evolution and Promoting Selective CO 2 Electroreduction to CO at Low Overpotentials by Alloying Au with Pdcitations
- 2019Suppressing H2 Evolution and Promoting Selective CO2 Electroreduction to CO at Low Overpotentials by Alloying Au with Pdcitations
- 2018Elastic versus Alloying Effects in Mg-Based Hydride Filmscitations
- 2017Enhancement of Destabilization and Reactivity of Mg Hydride Embedded in Immiscible Ti Matrix by Addition of Crcitations
- 2017Photochromism of rare-earth metal-oxy-hydridescitations
- 2016Interface and strain effects on the H-sorption thermodynamics of size-selected Mg nanodotscitations
- 2016Photoelectrochemical water splitting with porous α-Fe2O3 thin films prepared from Fe/Fe-oxide nanoparticlescitations
- 2016Amorphous Metal-Hydrides for Optical Hydrogen Sensingcitations
- 2015Destabilization of Mg Hydride by Self-Organized Nanoclusters in the Immiscible Mg-Ti System
- 2012Optical hydrogen sensors based on metal-hydridescitations
- 2012Combined XPS and first principle study of metastable Mg-Ti thin filmscitations
- 2011Thin film metal hydrides for hydrogen storage applicationscitations
- 2010X-ray photoelectron spectroscopy study of MgH2 thin films grown by reactive sputteringcitations
- 2009Lightweight sodium alanate thin films grown by reactive sputteringcitations
- 2009Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processescitations
- 2008Optimization of Mg-based fiber optic hydrogen detectors by alloying the catalystcitations
- 2006The growth-induced microstructural origin of the optical black state of Mg 2 NiH x thin films
- 2006Structural and optical properties of MgxAl1-xH y gradient thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Interface and strain effects on the H-sorption thermodynamics of size-selected Mg nanodots
Abstract
<p>This work deals with the thermodynamics of hydride formation in 3-D nanoconfined Mg. Two ensembles of nearly monodisperse Mg nanodots (NDs) with different diameters (60 and 320 nm), were grown by the template nanopatterning method, using ultra-thin alumina membranes (UTAMs) with ordered porosity as evaporation masks. Multilayer NDs consisting of 30 nm Mg, 5 nm Ti and 5 nm Pd were deposited on UTAM-coated glass substrates by molecular beam epitaxy. The lateral surface of the NDs is constituted by native MgO. The morphology of the NDs was characterized by field emission scanning electron microscopy and atomic force microscopy. Hydride formation and decomposition was studied at low temperature (363–393 K) by means of optical hydrogenography. Compared to bulk Mg, the plateau pressure for hydrogen absorption in NDs exhibits an upward shift, which is larger for small NDs. Differently, the desorption plateau pressure is almost the same for the two NDs size and is lower than for bulk Mg. These hydrogen sorption features are discussed in the frame of a model that takes into account both interface energy and elastic strain energy in the constrained nanodots. The onset of plastic deformation, marked by a high pressure hysteresis between hydrogen absorption and desorption isotherms, limits the extent of hydride destabilization that can be achieved by elastic strain engineering.</p>