People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moore, Stacy R.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Microstructural Analysis of Ex-Service Neutron Irradiated Stainless Steel Nuclear Fuel Cladding by High-Speed AFM
- 2024The Transient Thermal Ageing of Eurofer 97 by Mitigated Plasma Disruptions
- 2024A correlative approach to evaluating the links between local microstructural parameters and creep initiated cavitiescitations
- 2023Microstructural modelling and characterisation of laser-keyhole welded Eurofer 97citations
- 2022Stress Corrosion Cracking in Stainless Steelscitations
- 2021Sample Preparation Methods for Optimal HS-AFM Analysiscitations
- 2019Development of Fatigue Testing System for in-situ Observation of Stainless Steel 316 by HS-AFM & SEMcitations
- 2018A study of dynamic nanoscale corrosion initiation events by HS-AFMcitations
- 2018Development of an adapted electrochemical noise technique for in-situ corrosion monitoring of spent nuclear fuel aqueous storage environments
- 2017Investigating corrosion using high-speed AFM
- 2017In situ imaging of corrosion processes in nuclear fuel claddingcitations
Places of action
Organizations | Location | People |
---|
article
Development of Fatigue Testing System for in-situ Observation of Stainless Steel 316 by HS-AFM & SEM
Abstract
A miniature three-point bend fatigue stage for in-situ observation of fatigue microcrack initiation and growth behaviour by scanning electron microscopy (SEM) and contact mode high-speed atomic force microscopy (HS-AFM) has been developed.Details of this stage are provided along with finite element simulations of the stress profiles of said stage and specimen on loading. The proposed stage facilitates study of the micro mechanisms of fatigue damage evolution when used during SEM and HS-AFM scanning of the sample surface. High amplitude low cycle fatigue tests have been carried out on annealed AISI Type 316 stainless steel to demonstrate the applicability of the system. Characteristic features of surface topography and evolution of slip bands observed have been documented. Images obtained by SEM and HS-AFM are presented for comparison. Finally, to demonstrate the capability of the new facility combined with HS-AFM, the spacing between slip bands and their height at different grains at the centre of the metal sample are measured and compared.