Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Correira, Jafo

  • Google
  • 1
  • 6
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Influence of fillet end geometry on fatigue behaviour of welded joints35citations

Places of action

Chart of shared publication
Lesiuk, G.
1 / 44 shared
Da Silva, All
1 / 5 shared
Fernandes, Aa
1 / 34 shared
Berto, F.
1 / 69 shared
Calcada, R.
1 / 17 shared
De Jesus, Amp
1 / 92 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Lesiuk, G.
  • Da Silva, All
  • Fernandes, Aa
  • Berto, F.
  • Calcada, R.
  • De Jesus, Amp
OrganizationsLocationPeople

article

Influence of fillet end geometry on fatigue behaviour of welded joints

  • Lesiuk, G.
  • Da Silva, All
  • Fernandes, Aa
  • Correira, Jafo
  • Berto, F.
  • Calcada, R.
  • De Jesus, Amp
Abstract

This paper presents a fatigue analysis of a type of fillet welded joint representative of one main joint of the steel box girder of the Alcacer do Sal railway bridge. From previous studies, it was found that the welded joint between the box girder diagonal and the central hanger gusset is one of the most stressed details of the bridge. This welded joint was not fully manufactured according to current construction procedures, as regards the fillet weld end configuration. In order to assess the fatigue behaviour of such welded joint, the present study combines an experimental campaign and numerical analysis. A total of four welded joint series were produced in order to allow the comparison of the fatigue performance of similar type of welded joint of the Alcacer do Sal bridge with welded joints produced according to existing recommendations, such as EC3. Since scale-down specimens were considered, two different thicknesses were included in this study for each joint configuration, to allow the verification of any thickness effect. Concerning the numerical analyses, two main numerical tools were used: the standard Finite Element Method (FEM) with ANSYS and the eXtended Finite Element Method (XFEM) with ABAQUS. Fatigue life predictions were performed including both fatigue crack initiation and fatigue crack propagation phases. The number of cycles to initiate a fatigue crack was computed using local notch strain-life approaches, and the number of cycles for fatigue crack propagation was computed by integrating the Paris fatigue crack growth law with stress intensity factors computed with ANSYS (virtual crack closure technique) and ABAQUS (contour integral method, 3D XFEM model). Experimental tests demonstrated little influence of fillet weld end geometry on fatigue behaviour of welded joints and plate thickness effects were also reduced as also confirmed by the similar fatigue crack propagation rates. Both numerical simulations provided very accurate predictions of the experimental S-N curves, however the XFEM modelling opens new possibilities for mix mode fatigue crack propagation simulations.

Topics
  • impedance spectroscopy
  • phase
  • simulation
  • crack
  • steel
  • fatigue