People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Araújo, Diana Filipa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Chitin-Glucan Complex Hydrogelscitations
- 2023Novel Hydrogel Membranes Based on the Bacterial Polysaccharide FucoPolcitations
- 2021Production of medium-chain-length polyhydroxyalkanoates by Pseudomonascitations
- 2020Low Temperature Dissolution of Yeast Chitin-Glucan Complex and Characterization of the Regenerated Polymercitations
- 2019Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerolcitations
Places of action
Organizations | Location | People |
---|
article
Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas
Abstract
<p>Pseudomonas chlororaphis subsp. aurantiaca DSM 19603 was cultivated on apple pulp, a glucose- and fructose-rich waste generated during juice production, to produce medium-chain length polyhydroxyalkanoates. A cell dry mass of 8.74 ± 0.20 g/L, with a polymer content of 49.25 ± 4.08% were attained. The produced biopolymer was composed of 42.7 ± 0.1 mol% 3-hydroxydecanoate, 17.9 ± 1.0 mol% 3-hydroxyoctanoate, 14.5 ± 1.1 mol% 3-hydroxybutyrate, 11.1 ± 0.6 mol% 3-hydroxytetradecanoate, 10.1 ± 0.5 mol% 3-hydroxydodecanoate and 3.7 ± 0.2 mol% 3-hydroxyhexanoate. It presented low glass transition and melting temperatures (−40.9 ± 0.7 °C and 42.0 ± 0.1 °C, respectively), and a degradation temperature of 300.0 ± 0.1 °C, coupled to a low crystallinity index (12.7 ± 2.7%), a molecular weight (Mw) of 1.34 × 10<sup>5</sup> ± 0.18 × 10<sup>5</sup> Da and a polydispersity index of 2.70 ± 0.03. The biopolymer's films were dense and had a smooth surface, as demonstrated by Scanning Electron Microscopy. They presented a tension at break of 5.21 ± 1.09 MPa, together with an elongation of 400.5 ± 55.8% and an associated Young modulus of 4.86 ± 1.49 MPa, under tensile tests. These attractive filming properties of this biopolymer could potentially be valorised in several areas such as the fine chemicals industry, biomedicine, pharmaceuticals, or food packaging.</p>