Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Teresa Duarte, Mt

  • Google
  • 1
  • 5
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Insights into electronic and structural properties of novel Pd(II) salen-type complexes22citations

Places of action

Chart of shared publication
Fonseca, J.
1 / 15 shared
Freire, Cristina
1 / 55 shared
Magalhaes, Al
1 / 6 shared
Cunha Silva, L.
1 / 11 shared
Martinez, J.
1 / 7 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Fonseca, J.
  • Freire, Cristina
  • Magalhaes, Al
  • Cunha Silva, L.
  • Martinez, J.
OrganizationsLocationPeople

article

Insights into electronic and structural properties of novel Pd(II) salen-type complexes

  • Fonseca, J.
  • Freire, Cristina
  • Magalhaes, Al
  • Teresa Duarte, Mt
  • Cunha Silva, L.
  • Martinez, J.
Abstract

Novel palladium(II) complexes with salen-type ligands based on 3-methylsalicyladehyde and a set of aliphatic diamines (C1 to C4) have been synthesised and characterized by spectroscopic techniques (UV-Vis and FTIR), Density Functional Theory (DFT) calculations and single-crystal X-ray diffraction for C1 and C4. X-ray diffraction analysis of these complexes was focused on coordination sphere and supramolecular arrangements. In the two compounds, the molecules form dimers, being the most relevant intermolecular interactions the hydrogen bonds of the type C-H center dot center dot center dot O, C-H center dot center dot center dot pi and pi center dot center dot center dot pi stacking interactions between the six-membered metallocycles. Electronic spectra of all Pd(II) complexes are dominated by charge transfer and intraligand bands at lambda < 400 nm. DFT calculations showed that the HOMO is ligand-dominated, with the metal contribution being similar to 18% for all complexes. This suggests that the structural/electronic differences between the ligands do not influence significantly the participation of metal orbitals in HOMO. All the complexes exhibit dipole moments with the same direction, from the aldehyde moiety towards the imine bridge with C2 and C3 showing quite similar values, mu(C2) = 5.49 and mu(C3) = 5.54 D, whereas complexes C1 and C4 show slightly higher values: mu(C1) = 5.79 and mu(C4) = 6.17 D. The magnitude of bond lengths and angles predicted by DFT calculations are comparable to those determined by X-ray crystallography. The experimental vibrational frequencies of the Pd(II) complexes were correlated with the values estimated by DFT calculations. The good agreement between the experimental and theoretical vibrational data allowed the assignment of relevant IR bands to molecular vibration modes.

Topics
  • density
  • impedance spectroscopy
  • compound
  • x-ray diffraction
  • theory
  • Hydrogen
  • density functional theory
  • palladium
  • aldehyde