Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Especel, Catherine

  • Google
  • 8
  • 26
  • 214

University of Poitiers

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2015Hydrocarbon fuel synthesis from sorbitol over bifunctional catalysts: Association of tungstated titania with platinum, palladium or iridium23citations
  • 2015Selective ring opening of methylcyclohexane and decalin over Rh-Pd supported catalysts: Effect of the preparation method15citations
  • 2012Selective hydrogenation of citral to unsaturated alcohols over mesoporous Pt/Ti-Al2O3 catalysts. Effect of the reduction temperature and of the Ge addition14citations
  • 2012Citral hydrogenation on high surface area mesoporous TiO2-SiO2 supported Pt nanocomposites: Effect of titanium loading and reduction temperature on the catalytic performances22citations
  • 2011The relationship between the structural properties of bimetallic Pd-Sn/SiO2 catalysts and their performance for selective citral hydrogenation 73citations
  • 2011Catalytic performances of large pore Ti-SBA15 supported Pt nanocomposites for the citral hydrogenation reaction 20citations
  • 2010Control of titania nanodomain size as a route to modulate SMSI effect in Pt/TiO2 catalysts20citations
  • 2006Bimetallic Rh-Ge and Pt-Ge catalysts supported on TiO2 for citral hydrogenation I. Preparation and characterization of the catalysts 27citations

Places of action

Chart of shared publication
Cabiac, Amandine
1 / 4 shared
Vilcocq, Lea
1 / 1 shared
Duprez, Daniel
2 / 8 shared
Lacombe, Sylvie
1 / 4 shared
Dippolito, Silvana A.
1 / 1 shared
Epron, Florence
2 / 6 shared
Pieck, Carlos L.
1 / 2 shared
Ekou, Tchirioua
3 / 3 shared
Royer, Sebastien
3 / 16 shared
Flura, Aurelien
1 / 2 shared
Ekou, Lynda
1 / 1 shared
Royer, S.
1 / 2 shared
Bidaoui, M.
1 / 1 shared
Mohammedi, O.
1 / 1 shared
Bouchenafa-Saib, N.
1 / 1 shared
Duprez, D.
1 / 3 shared
Marecot, Patrice
2 / 3 shared
Lafaye, Gwendoline
1 / 1 shared
Vicente, Aurélie
1 / 1 shared
Williams, Christopher T.
1 / 1 shared
Samoila, Petrisor
1 / 3 shared
Bonne, Magali
1 / 9 shared
Vicente, A.
1 / 2 shared
Lafaye, G.
1 / 1 shared
Marecot, P.
1 / 1 shared
Ekou, T.
1 / 1 shared
Chart of publication period
2015
2012
2011
2010
2006

Co-Authors (by relevance)

  • Cabiac, Amandine
  • Vilcocq, Lea
  • Duprez, Daniel
  • Lacombe, Sylvie
  • Dippolito, Silvana A.
  • Epron, Florence
  • Pieck, Carlos L.
  • Ekou, Tchirioua
  • Royer, Sebastien
  • Flura, Aurelien
  • Ekou, Lynda
  • Royer, S.
  • Bidaoui, M.
  • Mohammedi, O.
  • Bouchenafa-Saib, N.
  • Duprez, D.
  • Marecot, Patrice
  • Lafaye, Gwendoline
  • Vicente, Aurélie
  • Williams, Christopher T.
  • Samoila, Petrisor
  • Bonne, Magali
  • Vicente, A.
  • Lafaye, G.
  • Marecot, P.
  • Ekou, T.
OrganizationsLocationPeople

article

Selective ring opening of methylcyclohexane and decalin over Rh-Pd supported catalysts: Effect of the preparation method

  • Dippolito, Silvana A.
  • Especel, Catherine
  • Epron, Florence
  • Pieck, Carlos L.
Abstract

International audience ; Bimetallic Rh-Pd catalysts prepared by various impregnation methods were evaluated in the selective ring-opening of decalin and methylcyclohexane (MCH) used as model molecules of hydrogenated aromatics of the Light Cycle Oil fraction. Rh and Pt were deposited on Al2O3 and SiO2-Al2O3 (S40) by coimpregnation (Cl) or successive impregnations (SI) with different orders of metal addition. Catalysts were characterized by H-2 chemisorption, temperature-programmed reduction, temperature-programmed desorption of pyridine, and test reactions of cyclopentane hydrogenolysis and isomerization of 3,3-dimethyl-1-butene. Their catalytic behaviors for the ring-opening reaction were deeply influenced by the acidity of the support, and in a lesser extent by the metal deposition method. On both supports, the CI catalysts, displaying the highest dispersion values, exhibited the best ring opening performances. In the case of the SI catalysts, the addition order of both metals modified in a moderate way the properties of the catalyst. The yield to ring opening products obtained in MCH ring opening with CI catalysts supported on Al2O3 was 39-69% higher than those prepared by SI (conversion = 55-60%) while for the catalysts supported on S40, the yield to ring opening products was 8-48% higher for the CI catalysts compared to SI catalysts (conversion = 72-77%). The conversion of decalin for the bimetallic catalysts supported on Al2O3 was lower than 20% being dehydrogenated compounds the main reaction products regardless the preparation method. The catalyst supported on S40 showed decalin conversion values between 46-53% and yield to ring opening near to 30%. Moreover, the CI catalysts have yield to ring opening 10 to 20% higher than the catalysts prepared by SI. The catalyst prepared by coimpregnation supported on S40 was the most appropriate for opening the MCH and decalin due to an optimal balance between the metal and acid functions.

Topics
  • Deposition
  • dispersion
  • compound
  • chemical ionisation
  • temperature-programmed reduction