People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reis, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023An ethics framework for social listening and infodemic managementcitations
- 2023A Review on Direct Laser Deposition of Inconel 625 and Inconel 625-Based Composites-Challenges and Prospectscitations
- 2023Adding Value to Secondary Aluminum Casting Alloys: A Review on Trends and Achievementscitations
- 2023A Predictive Methodology for Temperature, Heat Generation and Transfer in Gigacycle Fatigue Testingcitations
- 2023Infiltration of aluminum in 3D-printed metallic inserts
- 2022Finite Element Analysis of Distortions, Residual Stresses and Residual Strains in Laser Powder Bed Fusion-Produced Components
- 2022Automation of Property Acquisition of Single Track Depositions Manufactured through Direct Energy Depositioncitations
- 2022Thermal study of a cladding layer of Inconel 625 in Directed Energy Deposition (DED) process using a phase-field modelcitations
- 2020Smart Data Visualisation as a Stepping Stone for Industry 4.0-a Case Study in Investment Casting Industrycitations
- 2020Automatic Visual Inspection of Turbo Vanes produced by Investment Casting Processcitations
- 2019Fracture characterization of a cast aluminum alloy aiming machining simulationcitations
- 2019Mechanical characterization of the AlSi9Cu3 cast alloy under distinct stress states and thermal conditionscitations
- 2017Simulation Studies of Turning of Aluminium Cast Alloy Using PCD Toolscitations
- 2017Comparison Between Cemented Carbide and PCD Tools on Machinability of a High Silicon Aluminum Alloycitations
- 2016Laboratory performance of universal adhesive systems for luting CAD/CAM restorative materials
- 2016Development of a Flexible, Light Weight Structure, Adaptable to any Space through a Shape Shifting Featurecitations
- 2016Integrated thermomechanical model for forming of glass containerscitations
- 2012Damage Prediction in Incremental Forming by Using Lemaitre Damage Modelcitations
- 2012Custom Hip Prostheses by Integrating CAD and Casting Technology
- 2002Finite-element simulation and experimental validation of a plasticity model of texture and strain-induced anisotropy
Places of action
Organizations | Location | People |
---|
article
Mechanical characterization of the AlSi9Cu3 cast alloy under distinct stress states and thermal conditions
Abstract
This paper presents the results of several mechanical tests aiming at characterizing the constitutive behaviour of the AlSi9Cu3 cast alloy, covering different temperatures and stress fields, including tensile and compressive tests of smooth and notched specimens as well as combined shear/tension and shear/compression with special designed specimens. The Johnson-Cook model was able to correlate the flow stress under quasi-static uniaxial compression, including thermal effects. However, under tension the yield stress does not reduces monotonically and gradually with temperature, which impedes the application of Johnson-Cook model for positive triaxialities. At room temperature, the AlSi9Cu3 alloy shows significant asymmetrical tensile and compressive behaviours requiring a plasticity model sensitive to the stress triaxiality such as the Drucker-Prager. As regards the ductility limits of the material, different data was analysed to generate fracture loci for the material where equivalent fracture strains were plotted against the stress triaxialities. The calibrated Drucker-Prager constitutive model together with a damage approach based on the fracture loci generated was successfully verified using test data from specimens loaded under combined shear/tension or shear/compression. The AlSi9Cu3 cast alloy exhibits a sharp reduction in ductility between the negative stress triaxiality cut-off and -0.1, keeping at low levels above this triaxiality value.