Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

French, R. W.

  • Google
  • 1
  • 5
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Effects of microwave radiation on electrode position processes at tin-doped indium oxide (ITO) electrodes15citations

Places of action

Chart of shared publication
Marken, Frank
1 / 91 shared
Compton, R. G.
1 / 4 shared
Mahon, Mary F.
1 / 22 shared
Rassaei, L.
1 / 8 shared
Vigil, E.
1 / 2 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Marken, Frank
  • Compton, R. G.
  • Mahon, Mary F.
  • Rassaei, L.
  • Vigil, E.
OrganizationsLocationPeople

article

Effects of microwave radiation on electrode position processes at tin-doped indium oxide (ITO) electrodes

  • Marken, Frank
  • Compton, R. G.
  • Mahon, Mary F.
  • Rassaei, L.
  • Vigil, E.
  • French, R. W.
Abstract

In situ microwave activation is investigated for the electrodeposition of a metal (gold) and for a metal oxide (hydrous Ti(IV) oxide) onto tin-doped indium oxide (ITO) film electrodes. It is demonstrated that localized microwave heating of the ITO film can be exploited to affect electrodeposition processes. The electrochemically reversible and temperature sensitive one-electron redox system Fe(CN)(6)(3-/4-) was employed in aqueous solution in order to calibrate the average surface temperature at the ITO film electrode. In the presence of microwave radiation the average electrode surface temperature reached ca. 363 K whereas under the same conditions the bulk solution temperature reached ca. 313 K. Therefore localized heating of the ITO film appears to be important. The rate of electrodeposition of gold from an aqueous 1 mM tetrachloroaurate(III) solution in 0.1 M KCl (adjusted to pH 2) is enhanced by microwave activation. However. the morphology of deposits remains un-effected. Hydrous titanium (IV) oxide films were electrodeposited from an aqueous solution of I mM TiCl3 in 0.1 M acetate buffer pH 4.7. Dense films with blocking character were obtained with conventional heating but a fibrous more open deposit forms in the presence of microwaves. (C) 2009 Elsevier Ltd. All rights reserved.

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • gold
  • titanium
  • activation
  • tin
  • electrodeposition
  • Indium