Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kear, G.

  • Google
  • 1
  • 5
  • 281

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005The corrosion of nickel–aluminium bronze in seawater [in A Century of Tafel’s Equation: A Commemorative Issue of Corrosion Science]281citations

Places of action

Chart of shared publication
Stokes, K. R.
1 / 12 shared
Barik, R. C.
1 / 3 shared
Wood, Robert J. K.
1 / 93 shared
Wharton, Julian A.
1 / 27 shared
Walsh, F. C.
1 / 33 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Stokes, K. R.
  • Barik, R. C.
  • Wood, Robert J. K.
  • Wharton, Julian A.
  • Walsh, F. C.
OrganizationsLocationPeople

article

The corrosion of nickel–aluminium bronze in seawater [in A Century of Tafel’s Equation: A Commemorative Issue of Corrosion Science]

  • Stokes, K. R.
  • Barik, R. C.
  • Kear, G.
  • Wood, Robert J. K.
  • Wharton, Julian A.
  • Walsh, F. C.
Abstract

Nickel–aluminium bronze (NAB) alloys show good corrosion resistance under marine conditions. The corrosion behaviour of cast and wrought NAB alloys is illustrated in this work through a range of electrochemical techniques including open-circuit potentiometry with time, oxygen reduction voltammetry, NAB dissolution voltammetry, potential step (or flow step) current transients and linear polarisation resistance. The galvanic coupling of NAB to stainless steel or copper is examined by zero resistance ammetery. The importance of using controlled flow working electrodes is illustrated by the use of a rotating disc electrode, a rotating cylinder electrode and a bimetallic (NAB/copper–nickel) rotating cylinder electrode. In addition to controlling the hydrodynamics, such electrodes allow charge transfer data to separate from those of mass transport control under mixed kinetic control. Longer term seawater immersion trials on planar coupons coupled to titanium or cupronickel are also reported. The relative contributions of erosion and corrosion attack are considered using a wall-jet electrode and the corrosion characteristics of NAB are compared to those of copper and copper–nickel in chloride media.

Topics
  • impedance spectroscopy
  • nickel
  • stainless steel
  • corrosion
  • Oxygen
  • aluminium
  • copper
  • titanium
  • bronze
  • voltammetry
  • potentiometry