People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vervloet, Jolien
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2020Experimental and numerical evaluation of textile reinforced cement (TRC) sandwich walls in compression: A geometrical studycitations
- 2019Experimental investigation of the buckling behaviour of textile reinforced cement sandwich panels with varying face thickness using Digital Image Correlationcitations
- 2019Fatigue Behaviour of Textile Reinforced Cementitious Composites and Their Application in Sandwich Elementscitations
- 2019Validation of a Numerical Bending Model for Sandwich Beams with Textile-Reinforced Cement Faces by Means of Digital Image Correlationcitations
- 2019Experimental study and benchmarking of 3D textile reinforced cement compositescitations
- 2019Durability of sandwich beams with textile reinforced cementitious composite facescitations
- 2018Design and experimental investigation of textile reinforced cement sandwich panel ends
- 2018Investigation of 3D TRC’s by Means of Three Point Bending Tests on Short Beam Specimens
- 2018Characterization of the Bond between Textile Reinforced Cement and Extruded Polystyrene by Shear Test
- 2018Fibre textile reinforced cementitious composites: experimental investigation and modelling of three point bending tests on short beams
- 2018Repeated loading of cement composite sandwich beams
- 2018Modelling and experimental verification of flexural behaviour of textile reinforced cementitious composite sandwich renovation panels
- 2018Influence of environmental loading on the tensile and cracking behaviour of textile reinforced cementitious compositescitations
- 2018Experimental investigation and benchmarking of 3D textile reinforced cementitious compositescitations
- 2018Buckling behaviour of structural insulating sandwich walls with textile reinforced cement facescitations
- 2018Investigation of 3D TRC's by Means of Three Point Bending Tests on Short Beam Specimens
- 2018Investigation of the bond properties between textile reinforced concrete and extruded polystyrene foam
- 2018Influence of weathering conditions on TRC sandwich renovation panelscitations
- 2017Durability study of textile reinforced cementitious composites with low fiber volume fraction
- 20173D fibre textiles as reinforcement for lightweight concrete structures
- 2017AE monitoring of 3D textile reinforced cements
- 2017Axial loading of small sandwich panels with textile reinforced cementitious faces monitored by DIC
Places of action
Organizations | Location | People |
---|
article
Experimental investigation of the buckling behaviour of textile reinforced cement sandwich panels with varying face thickness using Digital Image Correlation
Abstract
Sandwich panels with Textile Reinforced Cement composite (TRC) faces are promising structural elements for construction, as both the structural and insulating performance are merged into one lightweight construction element. In the literature, extended research has been performed to understand the bending behaviour of TRC sandwich panels, yet research into their behaviour under axial loading is scarce. Therefore, axial compression tests on TRC sandwich panels were performed; varying parameters in the tests were the materials of the TRC faces and the face thickness. Comparisons of experimental results with analytical predictions gave insight into the effect of the face thickness on the loadbearing<br/>and failure behaviour. For very thin faces the latter changed from global buckling of the sandwich panel towards wrinkling of the faces; both phenomena were clearly monitored by Digital Image Correlation. A good correlation between the analytical predictions and the experimental observations was obtained.<br/>