People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zou, Zhenmin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2025Effect of micro-scale fibre uncertainties on the mechanical behaviour of natural/synthetic hybrid fibre compositescitations
- 2024Intra-yarn fibre hybridisation effect on homogenised elastic properties and micro and meso-stress analysis of 2D woven laminae: Two-scale FE modelcitations
- 2024A two‐scale numerical analysis of intra‐yarn hybrid natural/synthetic woven composites
- 2024The static and fatigue failure of co-cured composite joints with two-scale interface tougheningcitations
- 2024Zero-tension fatigue behaviour of co-cured composite step joints with multiscale toughening
- 2024A two-scale numerical analysis of intra-yarn hybridnatural/synthetic woven composites
- 2024Fatigue Characterization of Composite Laminates with Interface Hybrid Toughening Using a Single-Step Joint Configurationcitations
- 2023Micromechanics of intra-laminar hybrid lamina with hollow fibres:
- 2023The effect of hygrothermal ageing on the delamination of Carbon/epoxy laminates with Core-shell rubber nanoparticle and Micro-fibre thermoplastic veil tougheningcitations
- 2023Micromechanics of intra-laminar hybrid lamina with hollow fibres::a RVE model
- 2022On the effect of binders on interlaminar fracture energies and R-curves of carbon/epoxy laminates with non-woven micro-fibre veilscitations
- 2022On the effect of binders on interlaminar fracture energies and R-curves of carbon/epoxy laminates with non-woven micro-fibre veilscitations
- 2022On the R-curve behaviour of carbon/epoxy laminates with core-shell rubber nanoparticle and micro-fibre veil hybrid toughening: Carbon vs PPS veilscitations
- 2022Thermally induced residual micro-stresses in hybrid composite laminates with tow-level fibre hybridization
- 2022Thermally induced residual micro-stresses in hybrid composite laminates with tow-level fibre hybridization
- 2018A computationally efficient cohesive zone model for fatiguecitations
- 2017Frequency-Dependent Cohesive Zone Models for Fatiguecitations
- 2008Analysis of crack propagation in nuclear graphite using three-point bending of sandwiched specimenscitations
Places of action
Organizations | Location | People |
---|
article
Intra-yarn fibre hybridisation effect on homogenised elastic properties and micro and meso-stress analysis of 2D woven laminae: Two-scale FE model
Abstract
In this paper, the effect of intra-yarn fibre hybridisation on the homogenised elastic properties and micro- and meso-scale matrix stress fields in 2D woven composite laminae (i.e. plain, 2/2 basket, 2/2 twill and 5-harness satin) is studied with a two-scale homogenisation scheme—employing a representative volume element model at micro-scale and a repeating unit cell model at meso-scale. The study is focused on S-glass/polypropylene/epoxy woven laminae with intra-yarn fibre hybridisation. A modified random sequential expansion algorithm generates microstructure for the micro-mechanical model, and a periodic meso-structure is used to generate the weave architecture for the meso-mechanical model. Both models are verified using analytical models. It is found that intra-yarn fibre hybridisation can significantly alter the homogenised properties as well as the micro- and meso-scale matrix stress fields—depending on the degree of hybridisation (i.e. the combination of S-glass and PP fibre volume fractions). Moreover, the homogenised lamina properties are found to be less sensitive to weave architecture and yarn thickness, but more so to the degree of intra-yarn fibre hybridisation, yarn width and yarn spacing. It is shown that the lamina properties can be tailored, and the micro- and meso-stress fields can be manipulated, by intra-yarn fibre hybridisation and weave architectures.