People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Jesus, Abílio M. P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023A Predictive Methodology for Temperature, Heat Generation and Transfer in Gigacycle Fatigue Testingcitations
- 2023Experimental parametric investigation on the behavior of adhesively bonded CFRP/steel jointscitations
- 2022Fatigue crack growth modelling by means of the strain energy density-based Huffman model considering the residual stress effectcitations
- 2022Fracture Characterization of Hybrid Bonded Joints (CFRP/Steel) for Pure Mode Icitations
- 2022Automation of Property Acquisition of Single Track Depositions Manufactured through Direct Energy Depositioncitations
- 2022A review of fatigue damage assessment in offshore wind turbine support structurecitations
- 2022Tensile Properties of As-Built 18Ni300 Maraging Steel Produced by DEDcitations
- 2021Probabilistic S-N curves for CFRP retrofitted steel detailscitations
- 2021Low-cycle fatigue modelling supported by strain energy density-based Huffman model considering the variability of dislocation densitycitations
- 2020Multiaxial fatigue assessment of S355 steel in the high-cycle region by using Susmel's criterioncitations
- 2020Study of the Fatigue Crack Growth in Long-Term Operated Mild Steel under Mixed-Mode (I plus II, I plus III) Loading Conditionscitations
- 2018Energy response of S355 and 41Cr4 steel during fatigue crack growth processcitations
Places of action
Organizations | Location | People |
---|
article
Experimental parametric investigation on the behavior of adhesively bonded CFRP/steel joints
Abstract
This paper presents an extensive experimental and numerical study on the behavior of CFRP/Steel adhesively bonded double strap joints (DSJ). A total of 50 DSJ specimens were tested under static tensile loading. The digital image correlation (DIC) was used to measure the backface deformation. A total of six adhesives that feature different stiffness, strength, ductility, and toughness were analyzed. A parametric study including several variants was carried out. The influencing parameters considered are the following: the adhesive type, adhesive thickness, CFRP elastic modulus, CFRP length, surface treatment, and steel thickness. The results revealed that rigid adhesives commonly used in the construction industry do not provide the best performance for the CFRP/steel joints, instead, tough adhesives which combine high strength and ductility are more suitable for strengthening metallic infrastructures. Steel plastic yielding has a significant influence on the strength, behavior, and failure modes of the CFRP/steel adhesive joint. A numerical model validated with experimental data was developed in ABAQUS. The experimental observations including failure modes, joint strengths, and ductility were discussed using the numerical model. The joint strength efficiency is highly recommended as a design criterion for bonded joints. ; Steel & Composite Structures