People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Theofanous, Marios
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023A triaxiality‐dependent fracture model for hot‐rolled sections made of S355 steel
- 2023Comparative study on fracture characteristics of carbon and stainless steel bolt materialcitations
- 2022Numerical modelling of stainless steel bolted T-stubs in tensioncitations
- 2022Numerical simulation and design of ferritic stainless steel bolted T-stubs in tensioncitations
- 2021Design of stainless steel cross-sections with outstand elements under stress gradientscitations
- 2021Structural response of cold-formed lipped Z purlins ��� Part 2 numerical modelling and optimisation of lip sizecitations
- 2021Structural response of cold-formed lipped Z purlins – Part 2 numerical modelling and optimisation of lip sizecitations
- 2021Experimental study of ferritic stainless steel bolted T-stubs under monotonic loadingcitations
- 2021Effect of transverse and longitudinal reinforcement ratios on the behaviour of RC T-beams shear-strengthened with embedded FRP barscitations
- 2019Elevated temperature performance of restrained stainless steel beamscitations
- 2019Structural behaviour of stainless steel beam-to-tubular column jointscitations
- 2019Plastic design of stainless steel continuous beamscitations
- 2019Numerical simulation and analysis of axially restrained stainless steel beams in fire
- 2019Effect of existing steel-to-embedded FRP shear reinforcement ratio on the behaviour of reinforced concrete T-beams
- 2018Behaviour of stainless steel beam-to-column joints-Part 2:citations
- 2018Experimental behavior and design of reinforced concrete exterior beam-column joints strengthened with embedded barscitations
- 2018Behaviour of stainless steel beam-to-column joints - Part 1: Experimental investigationcitations
- 2018Design of reinforced concrete T-beams strengthened in shear with externally bonded FRP composites
- 2017Material properties and compressive local buckling response of high strength steel square and rectangular hollow sectionscitations
- 2016The continuous strength method for steel cross-section design at elevated temperaturescitations
- 2016Laser-welded stainless steel I-sections: residual stress measurements and column buckling testscitations
- 2016Flexural behaviour of hot-finished high strength steel square and rectangular hollow sectionscitations
- 2015Experimental study of stainless steel angles and channels in bendingcitations
- 2012Ultimate capacity of stainless steel RHS subjected to combined compression and bending
Places of action
Organizations | Location | People |
---|
article
Effect of transverse and longitudinal reinforcement ratios on the behaviour of RC T-beams shear-strengthened with embedded FRP bars
Abstract
Seven reinforced concrete (RC) T-beams, comprising two unstrengthened (control) beams and five beams strengthened in shear with embedded FRP bars, were tested to failure. The test parameters were steel-to-FRP shear reinforcement ratio and tension reinforcement ratio. A nonlinear finite element (FE) model was developed, validated and used to conduct parametric studies. The experimental and FE results showed that the concrete and FRP contributions to shear resistance as well as the total shear force capacity all decrease with increasing steel-to-FRP shear reinforcement ratio. The tension reinforcement ratio influenced the failure mode of the tested and modelled beams but had insignificant impact on shear strength enhancement. The experimental results were compared with the FE and Concrete Society Technical Report 55 predictions. The FE model correctly reproduced the experimental results and gave accurate predictions, with a mean predicted-to-experimental ratio of 1.04, whereas TR55 gave conservative predictions, with a mean predicted-to-experimental ratio of 0.42.