Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sałaciński, Michał

  • Google
  • 2
  • 4
  • 32

Instytut Techniczny Wojsk Lotniczych

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Carbon Fiber Reinforced Polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubes32citations
  • 2019A New Approach to Modelling and Testing the Fatigue Strength of Helicopter Rotor Blades during Repair Processcitations

Places of action

Chart of shared publication
Boczkowska, Anna
1 / 87 shared
Latko-Durałek, Paulina
1 / 19 shared
Kozera, Rafał
1 / 22 shared
Dydek, Kamil
1 / 23 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Boczkowska, Anna
  • Latko-Durałek, Paulina
  • Kozera, Rafał
  • Dydek, Kamil
OrganizationsLocationPeople

article

Carbon Fiber Reinforced Polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubes

  • Boczkowska, Anna
  • Sałaciński, Michał
  • Latko-Durałek, Paulina
  • Kozera, Rafał
  • Dydek, Kamil
Abstract

The main purpose of this work was to improve the electrical conductivity of Carbon Fiber Reinforced Polymers (CFRP) by implementing novel thermoplastic nonwovens doped with carbon nanotubes. For this, two types of nonwovens containing carbon nanotubes were produced by the extrusion and thermal pressing of fibers. Nonwovens were placed between each layer of prepregs and CFRPs were fabricated using an out-of-autoclave method. It was found that implementation of nonwovens with 7wt% of multi-walled carbon nanotubes resulted in improved surface and volume electrical conductivity in all directions. Microstructure analysis revealed the good quality of the produced laminates and the random distribution of the nonwovens in the composite panels. Examination of loss and storage moduli by dynamic mechanical analysis showed the higher flexibility of the laminates and the appearance of an additional glass transition peak due to the presence of copolyamide in the nonwovens used.

Topics
  • microstructure
  • surface
  • Carbon
  • nanotube
  • extrusion
  • glass
  • glass
  • composite
  • random
  • thermoplastic
  • electrical conductivity
  • dynamic mechanical analysis