Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gomes, David Garoz

  • Google
  • 3
  • 25
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2018Multiscale approach for identification of transverse isotropic carbon fibre properties and prediction of woven elastic properties using ultrasonic identification22citations
  • 2015In-depth numerical analysis of the TDCB specimen for characterization of self-healing polymers19citations
  • 2014Crack propagation in micro-encapsulated polymer for self-healing: numerical modelling and experimental validationcitations

Places of action

Chart of shared publication
Verboven, Erik
1 / 16 shared
Van Paepegem, Wim
2 / 489 shared
Sevenois, R. D. B.
1 / 10 shared
Spronk, Siebe
1 / 9 shared
Sevenois, Ruben
1 / 15 shared
Verboven, E.
1 / 5 shared
Pyl, Lincy
1 / 60 shared
Gilabert, F. A.
1 / 15 shared
Gilabert, Francisco
3 / 3 shared
Garoz, D.
1 / 16 shared
Spronk, S. W. F.
1 / 9 shared
Pyl, L.
1 / 11 shared
Kersemans, Mathias
1 / 104 shared
Kersemans, M.
1 / 16 shared
Paepegem, Wim Van
2 / 64 shared
Gomez, David Garoz
1 / 3 shared
Du Prez, Filip E.
1 / 11 shared
Gilabert, Francisco A.
1 / 35 shared
Van Hemelrijck, Danny
2 / 126 shared
Hillewaere, Xander
2 / 3 shared
Hillewaere, Xander K. D.
1 / 2 shared
Tsangouri, Eleni
2 / 46 shared
Prez, Filip Du
2 / 4 shared
Allaer, Klaas
1 / 7 shared
Paepeghem, Wim Van
1 / 2 shared
Chart of publication period
2018
2015
2014

Co-Authors (by relevance)

  • Verboven, Erik
  • Van Paepegem, Wim
  • Sevenois, R. D. B.
  • Spronk, Siebe
  • Sevenois, Ruben
  • Verboven, E.
  • Pyl, Lincy
  • Gilabert, F. A.
  • Gilabert, Francisco
  • Garoz, D.
  • Spronk, S. W. F.
  • Pyl, L.
  • Kersemans, Mathias
  • Kersemans, M.
  • Paepegem, Wim Van
  • Gomez, David Garoz
  • Du Prez, Filip E.
  • Gilabert, Francisco A.
  • Van Hemelrijck, Danny
  • Hillewaere, Xander
  • Hillewaere, Xander K. D.
  • Tsangouri, Eleni
  • Prez, Filip Du
  • Allaer, Klaas
  • Paepeghem, Wim Van
OrganizationsLocationPeople

article

Multiscale approach for identification of transverse isotropic carbon fibre properties and prediction of woven elastic properties using ultrasonic identification

  • Verboven, Erik
  • Van Paepegem, Wim
  • Sevenois, R. D. B.
  • Spronk, Siebe
  • Sevenois, Ruben
  • Verboven, E.
  • Pyl, Lincy
  • Gilabert, F. A.
  • Gomes, David Garoz
  • Gilabert, Francisco
  • Garoz, D.
  • Spronk, S. W. F.
  • Pyl, L.
  • Kersemans, Mathias
  • Kersemans, M.
  • Paepegem, Wim Van
Abstract

In this work the possibility to reverse engineer the transverse isotropic carbon fibre properties from the 3D<br/>homogenized elastic tensor of the UD ply for the prediction of woven ply properties is explored. Ultrasonic<br/>insonification is used to measure the propagation velocity of both the longitudinally and transversally polarized<br/>bulk waves at various symmetry planes of a unidirectional (UD) Carbon/Epoxy laminate. These velocities and<br/>the samples' dimensions and density are combined to obtain the full 3D orthotropic stiffness tensor of the ply.<br/>The properties are subsequently used to reverse engineer the stiffness tensor, assumed to be transversely isotropic,<br/>of the carbon fibres. To this end, four micro-scale homogenization methods are explored: 2 analytical<br/>models (Mori-Tanaka and Mori-Tanaka-Lielens), 1 semi-empirical (Chamis) and 1 finite-element (FE) homogenization<br/>(randomly distributed fibres in a Representative Volume Element). Next, the identified fibre properties<br/>are used to predict the elastic parameters of UD plies with multiple fibre volume fractions. These are then<br/>used to model the fibre bundles (yarns) in a meso-scale FE model of a plain woven carbon/epoxy material.<br/>Finally, the predicted elastic response of the woven carbon/epoxy is compared to the experimentally obtained<br/>elastic stiffness tensor. The predicted and measured properties are in good agreement. Some discrepancy exists<br/>between the ultrasonically measured value of the Poisson's ratio and the predicted value. Nonetheless, it is<br/>shown that virtual identification and prediction of mechanical properties for woven plies is feasible.

Topics
  • density
  • impedance spectroscopy
  • Carbon
  • ultrasonic
  • isotropic
  • homogenization
  • woven
  • Poisson's ratio