People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Silva, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2023Designing of carbon fiber-reinforced polymer (CFRP) composites for a second-life in the aeronautic industry: strategies towards a more sustainable futurecitations
- 20233D printed magneto-active microfiber scaffolds for remote stimulation and guided organization of 3D In vitro skeletal muscle modelscitations
- 2023Infiltration of aluminum in 3D-printed metallic inserts
- 2022Editorial
- 2022Improvements in the Microstructure and Mechanical Properties of Aluminium Alloys Using Ultrasonic-Assisted Laser Weldingcitations
- 2020Morphological, optical and photovoltaic characteristics of MoSe2/SiOx/Si heterojunctionscitations
- 2020Influence of Operating Conditions on the Thermal Behavior and Kinetics of Pine Wood Particles Using Thermogravimetric Analysiscitations
- 2020Experimental comparative study of the variants of high-temperature vacuum-assisted resin transfer mouldingcitations
- 2019Printed Flexible mu-Thermoelectric Device Based on Hybrid Bi2Te3/PVA Compositescitations
- 2018The effect of the heating and air flow rate on the mass loss of pine wood particles
- 2017High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applicationscitations
- 2016Strong increase of the dielectric response of carbon nanotube/poly(vinylidene fluoride) composites induced by carbon nanotube type and pre-treatmentcitations
- 2016Strong increase of the dielectric response of carbon nanotube/poly(vinylidene fluoride) composites induced by carbon nanotube type and pre-treatmentcitations
- 2016Finite-Size Effects in the Absorption Spectra of a Single-Wall Carbon Nanotubecitations
- 2014Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene-butadiene-styrene composites for large strain sensor applicationscitations
- 2014Sharing of classical and quantum correlations via XY interactioncitations
- 2013Rheological and electrical analysis in carbon nanofiber reinforced polypropylene compositescitations
- 2012On the origin of the electrical response of vapor grown carbon nanofiber + epoxy composites
- 2012Comparative analyses of the electrical properties and dispersion level of VGCNF and MWCNT: epoxy compositescitations
- 2012Modeling And Simulating A Breeder Hybrid Soliton Reactor
- 2012Critical behavior of a three-dimensional hardcore-cylinder composite systemcitations
- 2012The effect of nanotube surface oxidation in the electrical response of MWCNT/PVDF nanocompositescitations
- 2012Temperature dependence of the electrical conductivity of vapor grown carbon nanofiber/epoxy composites with different filler dispersion levelscitations
- 2012The role of disorder on the AC and DC electrical conductivity of vapour grown carbon nanofibre/epoxy compositescitations
- 2012The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly(vinylidene fluoride) compositescitations
- 2011The role of solvent evaporation in the microstructure of electroactive β-poly(vinylidene fluoride) membranes obtained by isothermal crystallizationcitations
- 2011The influence of the dispersion method on the electrical properties of vapor-grown carbon nanofiber/epoxy compositescitations
- 2011The role of solvent evaporation in the microstructure of electroactive beta-poly(vinylidene fluoride) membranes obtained by isothermal crystallizationcitations
- 2011Poly(vinylidene fluoride-trifluoroethylene) (72/28) interconnected porous membranes obtained by crystallization from solutioncitations
- 2011The influence of matrix mediated hopping conductivity, filler concentration, aspect ratio and orientation on the electrical response of carbon nanotube/polymer nanocompositescitations
- 2011Applying complex network theory to the understanding of high-aspect-ratio carbon-filled compositescitations
- 2010The dominant role of tunneling in the conductivity of carbon nanofiber-epoxy compositescitations
- 2010Electroactive poly(vinylidene fluoride-trifluoroethylene) membranes obtained by isothermal crystallization from solution
- 2010Poly[(vinylidene fluoride)-co-trifluoroethylene] membranes obtained by isothermal crystallization from solutioncitations
- 2010Influence of fiber aspect ratio and orientation on the dielectric properties of polymer-based nanocompositescitations
- 2010Piezoresistive effect in polypropylene-carbon nanofiber composites obtained by shear extrusioncitations
- 2010The piezoresistive effect in polypropylene-carbon nanofibre composites obtained by shear extrusioncitations
- 2009The effect of fibre concentration on the α to β-phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly(vinylidene fluoride) compositescitations
- 2007CMOS x-ray image sensor arraycitations
- 2006Development of GF/PP towpreg woven fabrics for composite reinforcements
Places of action
Organizations | Location | People |
---|
article
High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications
Abstract
Poly(vinylidene fluoride) (PVDF) composites with different carbonaceous nanofillers, prepared by solution casting, were studied their chemical, mechanical, electrical and electro-mechanical properties evaluated. Few-layer graphene (FLG) nanoplatelets (G-NPL), graphene oxide (GO) and reduced graphene oxide (rGO) and single-walled carbon nanohorns (SWCNH)) were found to have a strong influence in the overall properties of the composites prepared with up to 5 wt% nanofiller contents. The mechanical strainof carbonaceous nanofillers/PVDF composites decreases from 15% to near 5% of maximum strain. The electrical percolation threshold depends on the nanofiller type, being below 1 wt% for rGO and near 2 wt% for the remaining nanofillers. The electrical conductivity shows a maximum increase of nine orders of magnitude, from σ ≈ 5×10-11 S/m of pure PVDF to σ ≈ 1×10-2 S/m for rGO/PVDF composites with 5 wt% nanofillers, the conduction mechanism being related to hopping between the carbonaceous nanofillers for concentrations higher than the percolation threshold. Furthermore, the composites show electro-mechanical properties, except for G-NPL materials, with rGO/PVDF composites with 5 wt% nanofiller content showing higher Gauge factor (GF) values, reaching GF≈ 11 for deformations between 0.5 and 2mm in 4-point bending experiments. These results demonstrate the suitability of the composites for strain sensing applications. ; Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013, project PTDC/EEI-SII/5582/2014, grants SFRH/BPD/110914/2015 and SFRH/BD/98219/2013 (P.C. and J.O., respectively), as well POCH and European Union. J.N.P. wish to thank the financial support of the project Centro-01-0145-FEDER-000017 - EMaDeS - Energy, Materials and Sustainable Development, co-financed by the Portugal 2020 Program (PT 2020), within the Regional Operational Program of the Center (CENTRO 2020) and the European Union through the European Regional Development Fund (ERDF). The ...