People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Allegri, Giuliano
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Fuzzy overbraids for improved structural performance
- 2024Evaluation of manufacturing methods for pultruded rod based hierarchical composite structural members with minimal porosity
- 2024Cobotic manufacture of hierarchically architectured composite materials
- 2024Characterisation of Highly-Aligned, Discontinuous, Fibre Composites for Compressive Performance
- 2023Assessing the mechanical and static aeroelastic performance of cellular Kirigami wingbox designscitations
- 2023Assessing the mechanical and static aeroelastic performance of cellular Kirigami wingbox designscitations
- 2023Fatigue Delaminations in Composites for Wind Turbine Blades with Artificial Wrinkle Defectscitations
- 2023Fatigue Delaminations in Composites for Wind Turbine Blades with Artificial Wrinkle Defectscitations
- 2023Failure analysis of unidirectional composites under longitudinal compression considering defects
- 2022MANUFACTURING OF NOVEL HIERARCHICAL HYBRIDISED COMPOSITES
- 2022MANUFACTURING OF NOVEL HIERARCHICAL HYBRIDISED COMPOSITES
- 2022Embedding artificial neural networks into twin cohesive zone models for composites fatigue delamination prediction under various stress ratios and mode mixitiescitations
- 2022Sensing delamination in composites reinforced by ferromagnetic Z-pins via electromagnetic inductioncitations
- 2021A route to sustainable aviationcitations
- 2021Embedding artificial neural networks into twin cohesive zone models for composites fatigue delamination prediction under various stress ratios and mode mixitiescitations
- 2021Effects of ferromagnetic & carbon-fibre Z-Pins on the magnetic properties of compositescitations
- 2021Mode I and Mode II interfacial fracture energy of SiC/BN/SiC CMCscitations
- 2020An energy-equivalent bridging map formulation for modelling delamination in through-thickness reinforced composite laminatescitations
- 2020A Unified Formulation for Fatigue Crack Onset and Growth via Cohesive Zone Modelling
- 2019Coupon scale Z-pinned IM7/8552 delamination tests under dynamic loadingcitations
- 2019Z-Pin Through-thickness enhancement of a composite laminate with variable thickness
- 2018Dynamic bridging mechanisms of through-thickness reinforced composite laminates in mixed mode delaminationcitations
- 2017Dynamic bridging mechanisms of through-thickness reinforced composite laminates in mixed mode delaminationcitations
- 2016An Experimental Investigation into Multi-Functional Z-pinned Composite Laminatescitations
- 2016On the delamination self-sensing function of Z-pinned composite laminatescitations
- 2016A Simplified Layered Beam Approach for Predicting Ply Drop Delamination in Thick Composite Laminatescitations
- 2015Through-thickness sensing of single Z-pin reinforced composite laminates
- 2015A cut-ply specimen for the mixed-mode fracture toughness and fatigue characterisation of FRPscitations
- 2013A new semi-empirical law for variable stress-ratio and mixed-mode fatigue delamination growthcitations
- 2013Buffeting mitigation using carbon nanotube composites: a feasibility studycitations
- 2013Buffeting mitigation using carbon nanotube compositescitations
- 2010An approach for dealing with high local stresses in finite element analysescitations
Places of action
Organizations | Location | People |
---|
article
On the delamination self-sensing function of Z-pinned composite laminates
Abstract
This paper investigates for the first time the usage of through-thickness reinforcement for delamination detection in self-sensing composite laminates. Electrically conductive T300/BMI Z-pins are considered in this study. The through-thickness electrical resistance is measured as the delamination self-sensing variable, both for conductive and non-conductive laminates. The Z-pin ends are connected to a resistance measurement circuit via electrodes arranged on the surface of the laminate. The delamination self-sensing function enabled by conductive Z-pins is characterised for Mode I/II delamination bridging, using single Z-pin coupons. Experiment results show that, if the through-thickness reinforced laminate is electrically conductive, the whole Z-pin pull-out process associated with delamination bridging can be monitored. However, for a non-conductive laminate, delamination bridging may not be sensed after the Z-pin is pulled out from one of the surface electrodes. Regardless of the electrical properties of the reinforced laminate, the through-thickness electrical resistance is capable of detecting Mode II bridging, albeit there exists an initial “blind spot” at relatively small lateral deformation. However, the Z-pin rupture can be clearly detected as an abrupt resistance increase. This study paves the way for exploring multi-functional applications of through-thickness reinforcement.